LETTER

Magnesium K-edge EXAFS study of bond-length behavior in synthetic pyrope-grossular garnet solid solutions

SIMONA QUARTIERI,^{1,*} FEDERICO BOSCHERINI,² CHIARA DALCONI,³ GIANLUCA IEZZI,^{4,5} CARLO MENEGHINI,⁶ AND ROBERTA OBERTI⁷

¹Dipartimento di Scienze della Terra, Università di Messina, Italy ²Dipartimento di Fisica and CNISM, Università di Bologna, Italy ³Dipartimento di Scienze della Terra, Università di Ferrara, Italy ⁴Dipartimento di Scienze della Terra, Università G. d'Annunzio, Chieti, Italy ⁵Department of Seismology and Tectonophysics, Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy ⁶Dipartimento di Fisica "E. Amaldi" and CNISM, Università di Roma Tre, Italy ⁷Istituto di Geoscienze e Georisorse, unità di Pavia, CNR, Italy

ABSTRACT

Direct structural characterization of the changes in the local environment of Mg occurring in the garnet structure as a function of the Ca content are determined by Mg *K*-edge X-ray absorption fine structure on synthetic samples along the pyrope-grossular join. With increasing Ca content, the short Mg-O2 distance of the dodecahedron slightly decreases, while the long Mg-O4 distance tends to increase, so that the dodecahedron is more distorted in grossular-rich garnets than in end-member pyrope. This quantitative direct description of the changes in the local environment of Mg in the pyrope-grossular solid solution confirms and better defines previous experimental and recent computational results.

Keywords: Pyrope-grossular garnets, EXAFS, magnesium, local environment