Crystal structures of synthetic melanotekite (Pb₂Fe₂Si₂O₉), kentrolite (Pb₂Mn₂Si₂O₉), and the aluminum analogue (Pb₂Al₂Si₂O₉)

G. DÖRSAM,^{1,*} A. LIEBSCHER,¹ B. WUNDER,² AND G. FRANZ¹

¹Fachgebiet Mineralogie und Petrologie, Technischen Universität Berlin Ackerstr. 76, D-13355 Berlin, Germany ²GeoForschungsZentrum Potsdam, Department 4, Telegrafenberg, D-14473 Potsdam, Germany

ABSTRACT

Synthetic crystals of melanotekite and kentrolite were obtained at 850 °C from melt. The aluminum analogue of kentrolite $Pb_2Al_2Si_2O_9$ was hydrothermally synthesized at 2 GPa, 650 °C together with zoisite-(Pb) and margarite-(Pb). Synthesis products were characterized by single-crystal diffraction studies and microprobe analysis.

The aluminum analogue Pb₂Al₂Si₂O₉ was observed in space group *Pbcn* with lattice parameters a = 6.8981(7) Å, b = 10.6906(15) Å, c = 9.7413(10) Å, and V = 718.37 Å³. Fourier mappings show no irregularities of the Pb site.

Melanotekite with lattice parameters a = 6.9786(6) Å, b = 11.0170(11) Å, c = 10.0895(9) Å, and V = 775.71(17) Å³ in space group *Pbcn* show a slightly deformed Pb-position in Fourier mappings.

Kentrolite was observed in space group $P2_122_1$ with pseudo-symmetry to *Pbcn* with lattice parameters a = 7.0103(5) Å, b = 11.0729 (7) Å, c = 9.9642(7) Å, and V = 773.47(11) Å³. Fourier mappings of the kentrolite structure show that two different split Pb sites exist, which causes lower symmetry. The unit-cell volume of different members of the kentrolite group is a linear function of trivalent ionic radii in sixfold coordination for the elements Al, Ga, In, and also for Fe and Mn in high spin mode.

The structure of $Pb_2M_2Si_2O_9$ (M = Al³⁺, Fe³⁺, Mn³⁺) is built on isolated M-octahedra chains parallel **c**, M-octahedra sharing alternately *trans* and *skew* edges. Each Si₂O₇-group is linked with their vertices to three octahedra chains. Their Si-O-Si bond angles depend on the size of M-octahedra and are 129.84° in $Pb_2Al_2Si_2O_9$, 131.08° in $Pb_2Fe_2Si_2O_9$, 128.34° and 130.33° in $Pb_2Mn_2Si_2O_9$.

Keywords: Kentrolite, melanotekite, Pb₂Al₂Si₂O₉, Pb₂Fe₂Si₂O₉, Pb₂Mn₂Si₂O₉, crystal-structure, X-ray-diffraction, EMP-analysis