American Mineralogist, Volume 93, pages 1418–1423, 2008

Pb⁺ irradiation of synthetic zircon (ZrSiO₄): Infrared spectroscopic investigation MING ZHANG,^{1,*} LYNN A. BOATNER,² EKHARD K.H. SALJE,¹S. HONDA,² AND RODNEY C. EWING³

¹Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, U.K. ²Center for Radiation Detection Materials and Systems, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6056, U.S.A.

³Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1005, U.S.A.

ABSTRACT

The structural variations of synthetic zircon (ZrSiO₄) single crystals irradiated at room temperature by 280 keV Pb⁺ ions (with fluences up to 1×10^{15} ions/cm²) were investigated using infrared (IR) spectroscopy. Like metamict zircon whose crystal structure is damaged and amorphized by naturally occurring α -decay events, the Pb⁺-irradiated zircon crystals show a dramatic decrease in reflectivity. However, no significant decrease in wavenumbers of the stretching vibrations of SiO₄ tetrahedra in zircon was detected. The Pb⁺-implanted zircon exhibits new IR bands, indicating irradiation-induced new vibrations or domains, clusters or phases in addition to SiO₂ and ZrO₂. IR features consistent with those of Pb silicates (with a divalent state, i.e., Pb²⁺) are also found in the irradiated sample. This finding implies that some of the radiogenic Pb in natural zircon might not actually reside in the zircon lattice or in ZrSiO₄ phases, but form new local domains or clusters. Infrared bands of OH-stretching vibrations were also detected in the irradiated synthetic zircon, which was originally free from OH features prior to the irradiation. These results indicate that H can easily diffuse into the irradiated layer or into irradiated-induced phases to form OH or and hydrous species after the irradiated material is damaged. The type and content of hydrous species vary with irradiation fluences.

Keywords: Infrared spectrum, zircon, irradiation, lead silicate, Pb, amorphization, OH species