Ferric iron in Al-bearing akimotoite coexisting with iron-nickel metal in a shock-melt vein in an L-6 chondrite

NOBUYOSHI MIYAJIMA,^{1,*} AHMED EL GORESY,¹ CATHERINE DUPAS-BRUZEK,² FRIEDRICH SEIFERT,¹ DAVID C. RUBIE,¹ MING CHEN,³ AND XIANDE XIE³

¹Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany

²Centre d'Etudes et de Recherches Lasers et Applications, Universite des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq Cedex, France ³Guangzhou Institute of Geochemistry, CAS, Wushan, Guangzhou 510640, China

ABSTRACT

We report evidence for high ferric iron to total iron (Fe³⁺/ Σ Fe) ratios in Al-bearing akimotoite coexisting with other high-pressure silicates and Fe-Ni metal from shock melt-veins in the Sixiangkou (L-6) chondrite. The measurements were made using electron energy-loss near-edge structure (ELNES) spectroscopy. The results demonstrate that akimotoite in shock-melt veins of this meteorite has high proportions of Fe³⁺, with a Fe³⁺/ Σ Fe ratio of 0.67(3). In contrast, the coexisting majoritic garnet and ringwoodite, which are the typical Fe-bearing phases in shock veins in this meteorite, are enriched in Fe²⁺ rather than Fe³⁺, with Fe³⁺/ Σ Fe ratios of 0.10(5) and 0.15(5), respectively. We conclude that the higher affinity of Fe³⁺ for akimotoite, rather than for the other dense silicate phases, is related strongly to the substitution mechanism of trivalent cations. This mechanism is described as VI(A)Fe³⁺ + VI(B)</sup>Al³⁺ = VI(A)Mg²⁺ + VI(B)Si⁴⁺ in the ABO₃ structural formula of MgSiO₃-ilmenite under high pressures and temperatures, and operates even at a low oxygen fugacity where Fe-Ni metal is stable.

Keywords: Meteorite, L-6 chondrite, electron microscopy, Fe-bearing silicates, akimotoite, high pressure, shock-melt vein