The system Al₂O₃-P₂O₅-H₂O at temperatures below 200 °C: Experimental data on the stability of variscite and metavariscite AlPO₄·2H₂O

KIRSTEN DRÜPPEL,^{1,*} ANDREAS HÖSCH,² AND GERHARD FRANZ¹

¹Technical University Berlin, Institute for Applied Geosciences, Department of Mineralogy, Sekr. ACK9, Ackerstrasse 71-76, D-13355 Berlin, Germany ²Röntgenstrasse 7a, D-10587 Berlin, Germany

ABSTRACT

The system Al₂O₃-P₂O₅-H₂O contains many phosphate minerals that occur in various geologic environments. The natural occurrence of variscite (AlPO₄·2H₂O, orthorhombic), including its monoclinic polymorph metavariscite, is largely restricted to soils and aluminous rocks like Al-rich igneous rocks and shales, which interacted with P-rich hydrothermal solutions or groundwater. Variscite dehydrates to berlinite (AlPO₄) and a hydrous P-Al-rich fluid. This dehydration reaction AlPO₄· $2H_2O = AlPO_4 +$ 2H₂O is, however, metastable, at low concentrations of P in the fluid, because berlinite breaks down at lower temperature to augelite $[Al_2PO_4(OH)_3] + H_3PO_4 + H_2O$ and trolleite $[Al_4(PO_4)_3(OH)_3] + H_3PO_4$ + H₂O. The variscite/metavariscite = berlinite equilibrium has been investigated by synthesis experiments from mixtures of γ -Al₂O₃ and excess phosphoric acid at pressures between 1 and 5 kbar and temperatures of 100-200 °C using standard cold-seal vessels. The hydration-dehydration equilibrium is mainly controlled by temperature and only weakly by pressure. At 4 and 5 kbar, variscite/metavariscite were found at temperatures of ~150 °C, at lower pressure at 115–125 °C in accordance with their natural mode of occurrence. In this T range, however, variscite/metavariscite is not the sole phase but is always accompanied by variable but generally minor amounts of wavellite and trolleite Al₄(PO₄)₃(OH)₃. Secondary wavellite Al₃(PO₄)₂(OH)₃·5H₂O, hydrated Al-phosphate AlPO₄·xH₂O (1.1 $\leq x \leq 1.3$) and Al-metaphosphate hexahydrate Al(H₂PO₄)₃ formed during quenching and/or drying of the runs. Berlinite is the reaction product at temperatures 200 °C/4–5 kbar and 150 °C/1–3 kbar and may be associated with augelite and trolleite.

Keywords: Al-orthophosphates, berlinite, hydrothermal experiments, metavariscite, stability, variscite