American Mineralogist, Volume 92, pages 1789-1799, 2007

Atomic structure and formation mechanism of (301) rutile twins from Diamantina (Brazil)

NINA DANEU,^{1,*} HERBERT SCHMID,² ALEKSANDER REČNIK,¹ AND WERNER MADER²

¹Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia ²Institut für Anorganische Chemie, Universität Bonn, Römerstrasse 164, D-53117 Bonn, Germany

ABSTRACT

Rutile (TiO₂) twins from Diamantina in Brazil were investigated using analytical transmission electron microscopy methods. High-resolution transmission electron microscopy (HRTEM) imaging of (301) twinned rutile revealed the existence of a coherent interlayer at the twin boundary. The interface lamella, with a lateral width of a few nanometers, consists of ilmenite (FeTiO₃) containing some Al. The orientation relationship between the ilmenite lamella and the epitaxial rutile crystals is $(01\overline{1}0)[0001]_{I} \parallel (301)[010]_{R}$. The ilmenite-rutile interfaces are atomically sharp and devoid of misfit dislocations that would compensate for the lattice mismatch between the two structures. The Ti/Fe concentration ratios, as measured in the twin lamella by means of the variable-beam-diameter energy-dispersive spectroscopy (VBD/EDS) technique, correspond to ilmenite. The valence-sensitive features in electron energy-loss spectra (EELS) revealed that the Fe in the twin lamella adopts a divalent oxidation state (Fe^{2+}), which is characteristic of ilmenite. The lattice mismatch between the ilmenite and rutile appears to be compensated by the incorporation of Al into the ilmenite. The presence of goethite-related reflections and the existence of nanotwins in the ilmenite lamella imply that it formed via a thermally induced dehydration process from an oxyhydroxide precursor mineral with a tivanite-type structure. This lamella subsequently served as a nucleation site for the epitaxial growth of rutile domains in a (301) twin configuration.

Keywords: Rutile, ilmenite, corundum, hematite, epitaxy, twinning