An infrared investigation of the otavite–magnesite solid solution

FIONA A. BROMILEY,¹ TIZIANA BOFFA BALLARAN,^{1,*} AND MING ZHANG²

¹Bayerisches Geoinstitut, Universitaet Bayreuth, 95440 Bayreuth, Germany ²Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.

ABSTRACT

The local mixing and ordering behavior of the otavite-magnesite solid solution has been characterized using infrared powder absorption spectroscopy in the spectral region 50–2000 cm⁻¹ at room temperature. Lattice modes due to Cd translations (75-200 cm⁻¹) and Mg translations (200-350 cm⁻¹) were both observed in the IR spectra for samples of intermediate composition. Peak positions of Cd translations remain constant as a function of composition, whereas those of Mg translations decrease in wavenumber with increasing otavite content. This suggests that the otavite-magnesite solid solution displays a combination of one-mode and two-mode behavior, most likely due to the large difference in atomic weight between magnesium and cadmium. Vibrational bands relating to the CO_3^2 groups in the spectral region 600–900 cm⁻¹ vary linearly as a function of composition and are not sensitive to the degree of order. The vibrational band at $\sim 1400-1450$ cm⁻¹ also varies linearly with composition, but $R\overline{3}$ ordered samples show a marked increase in frequency compared to their $R\overline{3}c$ counterparts. Positive deviations from linearity are observed for the effective line width determined using the autocorrelation method (expressed in terms of Δ corr values) for both lattice modes and bending vibrations of the CO_2^{2-} molecular groups, whereas a linear variation as a function of composition of the Δ corr values of the CO_{2}^{-} stretching mode is observed for the 800 °C solid solution. Only in the region 600–900 cm⁻¹ is an effect of order observed as a reduction in Δ corr values with respect to the sample with $R\overline{3}c$ symmetry. The difference in Δ corr values between the ordered and disordered samples was used to determine the local order parameter, q, which is consistent with a tricritical order-disorder transition.

Keywords: IR spectroscopy, otavite-magnesite solid solution, autocorrelation, phase transition, carbonates.