P-V and *T-V* Equations of State of natural biotite: An in-situ high-pressure and high-temperature powder diffraction study, combined with Mössbauer spectroscopy

A. PAVESE,^{1,2,*} N. CURETTI,³ V. DIELLA,² D. LEVY,³ M. DAPIAGGI,¹ AND U. RUSSO⁴

¹Dipartimento Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23- 20133 Milano, Italy ²National Research Council, IDPA, Section of Milan, Via Botticelli 23-20133 Milano, Italy ³Dipartimento di Scienze Mineralogiche e Petrologiche, Università degli Studi di Torino, Via Valperga Caluso 37-10125 Torino, Italy ⁴Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1-35131 Padova, Italy

ABSTRACT

The *P*-*V* and *T*-*V* equations of state of a natural biotite sample (Mg/Fe ratio \approx 1) have been studied using in-situ high-pressure (0.0001–11 GPa) synchrotron radiation powder diffraction at the European Synchrotron Radiation Facilities (ESRF) in Grenoble, France, and in-situ high-temperature (298–610 K) laboratory X-ray powder diffraction. A third-order Birch-Murnaghan model [$V_0 = 498.7(1)$ Å³, measured value] provides the following elastic parameters: $K_0 = 49(1)$ GPa, K' = 8.1(5). The volume thermal expansion is satisfactorily described by a constant value resulting in 37(2) 10⁻⁶ K⁻¹. Mössbauer spectroscopy proves that REDOX reactions have occurred upon heating, presumably $2(OH^- + Fe^{2+})$ $\rightarrow 2O^{2-} + 2Fe^{3+} + H_2^{\uparrow}$ and/or $4Fe^{2+} + 2OH^- + O_2 \rightarrow 4Fe^{3+} + 3O^{2-} + H_2O$. On the basis of the elastic and thermal parameters measured we have modeled the deformation contribution (G_{deform}) to the Gibbs energy. The third-order Birch-Murnaghan model with V_0 fixed at its experimental value and the model with refined V_0 do not significantly differ from one another in terms of G_{deform} . A comparison based on G_{deform} between biotite and phlogopite shows a better compliance to *P* of the former, though balanced in mineral reactions by a difference of molar volume, i.e., V_0 (biotite) $> V_0$ (phlogopite).

Keywords: High-pressure studies, high-temperature studies, biotite, P-T stability