LETTER High-pressure transition of CaCO₃

SHIGEAKI ONO,^{1,2,*} TAKUMI KIKEGAWA,³ AND YASUO OHISHI⁴

¹Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan

²Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, U.K.

³High Energy Acceleration Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

⁴Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

ABSTRACT

Calcite, CaCO₃, is a common carbon-bearing mineral found on the Earth's surface. As carbon dioxide in the atmosphere can be sequestered in carbon-bearing minerals (carbonates), the stability of carbonate minerals is of great interest to earth science. In our study, in-situ X-ray diffraction observations indicate that calcium carbonate (CaCO₃) transforms to an orthopyroxene-type structure that has fourfold coordination of carbon cations, when heated to temperatures >1500 K at pressures >130 GPa, which is in agreement with theoretical predictions from ab initio calculations. The volume reduction of this transition is ~0.5%, and the high-pressure phase did not quench on decompression to ambient pressure. Although the post-aragonite phase, which has threefold coordination of carbon cations, shows strongly anisotropic compressibility of each axis of the unit-cell parameter, no obvious anisotropy in the pyroxene-type phase was observed. The stability of this new calcium carbonate implies that the carbon dioxide could be storable at the base of the lower mantle.

Keywords: Calcium carbonate, phase transition, high pressure, diamond anvil cell