Crystal structure of tooeleite, Fe₆(AsO₃)₄SO₄(OH)₄·4H₂O, a new iron arsenite oxyhydroxysulfate mineral relevant to acid mine drainage

GUILLAUME MORIN,^{1,*} GWENAELLE ROUSSE,¹ AND ERIK ELKAIM²

¹Institut de Minéralogie et de Physique des Milieux Condensés, UMR 7590, CNRS—Université Pierre et Marie Curie—Université Denis Diderot—IPGP, 140 rue de Lourmel, 75015 Paris, France ²Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin—BP 48 91192 Gif-sur-Yvette Cedex, France

ABSTRACT

The crystal structure of tooeleite, $Fe_6(AsO_3)_4(SO_4)(OH)_4$ ·4H₂O, has been solved from high-resolution synchrotron XRD powder data recorded on a sample from Tooele county, Utah. The structure is monoclinic, space group *C2/m*, *a* = 8.9575(1), *b* = 6.4238(1), *c* = 9.7912(1) Å, β = 96.032(1)°, *V* = 560.27(3) Å³, *d*_{calc} = 3.16 g/cm³. The structure was solved by direct methods and atomic positions, site occupancies, and isotropic displacement parameters were refined by the Rietveld method. The AsO₃ pyramids bond to FeO₆ octahedra by both edge- and corner-linkage, forming layers that intercalate SO₄ groups. Assignment of structural H₂O and OH groups were done from bond-valence analysis. Tooeleite is the only arsenite-sulfate mineral known and has been recently identified as the main constituent of stromatolite-like deposits in the Carnoulès acid mine, Gard, France.

Keywords: Crystal structure, tooeleite, XRD data, synchrotron powder diffraction, new minerals, geomicrobiology, acid mine drainage