Armbrusterite, K₅Na₆Mn³⁺Mn²⁺₁₄[Si₉O₂₂]₄(OH)₁₀·4H₂O, a new Mn hydrous heterophyllosilicate from the Khibiny alkaline massif, Kola Peninsula, Russia

VICTOR N. YAKOVENCHUK,¹ SERGEY V. KRIVOVICHEV,^{2,*} YAKOV A. PAKHOMOVSKY,¹ GREGORY YU. IVANYUK,¹ EKATERINA A. SELIVANOVA,¹ YURY P. MEN'SHIKOV,¹ AND SERGEY N. BRITVIN²

¹Geological Institute of the Kola Science Center of the Russian Academy of Sciences, 14 Fersman Str., Apatity 184209, Murmansk Region, Russia ²St. Petersburg State University, Department of Crystallography, University Emb. 7/9 St. Petersburg 199034, Russia

ABSTRACT

Armbrusterite, ideally $K_5Na_6Mn^{3+}Mn_{14}^{2+}[Si_9O_{22}]_4(OH)_{10}.4H_2O$, is a new silicate of potassium, sodium, and manganese found in a thin cancrinite-aegirine-microcline vein within urtite at Mt. Kukisvumchorr. The mineral occurs in intimate association with raite. Other associated minerals are lamprophyllite, mangan-neptunite, pectolite, vinogradovite, calcite, molybdenite, galena, sphalerite, and fluorite. Armbrusterite occurs as split, curved crystals and spherulites (≤ 2 mm diameter). The mineral is translucent (transparent in thin fragments), dark reddish-brown. It has vitreous luster and light-brown streak. Cleavage is perfect on (001) and the fracture is uneven. Mohs hardness is about 3.5. In transmitted light, the mineral is reddish-brown, with strong pleochroism: X = light yellowish-brown, Y and Z =dark reddish-brown; dispersion r > v, weak. Armbrusterite is biaxial (-): $\alpha = 1.532(2), \beta = 1.560(2), \beta = 1.56$ $\gamma = 1.564(2)$ (for $\lambda = 589$ nm), 2V varies from 10° to 20°. Optical orientation: X is perpendicular to (001). The mean chemical composition determined by electron microprobe and the Penfield method (for H₂O) is (wt%): Na₂O 5.26, MgO 0.19, Al₂O₃0.04, SiO₂ 56.02, K₂O 6.13, CaO 0.26, TiO₂ 0.04, MnO 23.62, Mn₂O₃ 2.07, FeO 0.65, ZnO 0.20, H₂O 4.1, sum. 98.58. Empirical formula calculated on the basis of Si = 36 is $K_{5,03}Na_{6,55}(Mn_{12,86}^{24}Mn_{10}^{3+}Fe_{0,35}^{2+}Mg_{0,18}Ca_{0,18}Zn_{0,09}Al_{0,03}Ti_{0,02})_{\Sigma=14,72}[Si_{36}O_{88}](OH)_{10,10}$ $\cdot 3.75 \text{ H}_2\text{O}$. Armbrusterite is monoclinic, C2/m, a = 17.333(2), b = 23.539(3), c = 13.4895(17) Å, $\beta = 13.4895(17) \text{ Å}$, β 115.069(9)°, V = 4985.4(11) Å³, Z = 2. The strongest X-ray powder-diffraction lines are [d in Å, (I), (*hkl*)]: 12.28 (100) (001), 4.10 (10) (003), 3.562 (10) (113, 261), 3.260 (18) (114), 3.117 (13) (203), 3.077 (54) (004), 2.622 (10) (371). The crystal structure of armbrusterite was refined to $R_1 = 0.085$ on the basis of 3960 unique observed reflections. The structure is based upon double silicate $[Si_9O_{22}]$ layers consisting of 5-, 6-, 7-, and 8-membered tetrahedra rings. The layers are linked via octahedral sheets formed by Na and Mn octahedra. The interior of the double silicate layers is occupied by K⁺ cations and H₂O molecules. The mineral is named in honor of Thomas Armbruster (b. 1950; University of Berne) for his outstanding contribution to structural mineralogy and crystallography, especially to the study of Mn-rich minerals.

Keywords: Armbrusterite, new mineral, sodium-potassium-manganese silicate, crystal structure, Khibiny massif, Kola Peninsula