American Mineralogist, Volume 92, pages 441-443, 2007

LETTER

A new high-pressure CaGe₂O₅ polymorph with 5- and 6-coordinated germanium

PÉTER NÉMETH,^{1,2,*} KURT LEINENWEBER,² THOMAS L. GROY,² AND PETER R. BUSECK^{1,2}

¹School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-1404, U.S.A. ²Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, U.S.A.

ABSTRACT

We discovered a new CaGe₂O₅ polymorph in high-pressure experiments (above 8 GPa). The phase is orthorhombic, space group *Pbam*, with *a* = 7.306(2), *b* = 8.268(2), *c* = 5.714(1) Å, *V* = 345.2(1) Å³, and *Z* = 4. The new phase, which we call post-titanite CaGe₂O₅, is the high-pressure polymorph of titanite CaGe₂O₅. The structure of this new polymorph is based on a network of 5- and 6-coordinated Ge polyhedra and 8-coordinated Ca atoms. Following the germanate analog to silicate, post-titanite CaSi₂O₅ could be expected to form at high-pressure conditions and thus might exist in Earth's mantle. **Keywords:** CaGe₂O₅ polymorph, post-titanite, 5- and 6-coordinated Ge, Earth's mantle