The effect of composition on Cr²⁺/Cr³⁺ in silicate melts

ANDREW J. BERRY,^{1,*} HUGH ST.C. O'NEILL,¹ DEAN R. SCOTT,¹ GARRY J. FORAN,^{2,3} AND J.M.G. SHELLEY¹

¹Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia ²Australian Synchrotron Research Program, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia ³Australian National Beamline Facility, KEK, Photon Factory, Oho 1-1, Tsukuba-shi, Ibaraki-ken 305-0801, Japan

ABSTRACT

Chromium *K*-edge X-ray absorption near-edge structure (XANES) spectra were recorded at room temperature for 27 CaO-MgO-Al₂O₃-SiO₂ (CMAS) glass compositions quenched from melts equilibrated at various oxygen fugacities (f_{O_2}) at 1400 °C. Values of $Cr^{2+}/\Sigma Cr$ were determined from the intensity of a shoulder on the main absorption edge, attributed to the 1s \rightarrow 4s transition, which is characteristic of Cr^{2+} in these glasses. For each composition, $Cr^{2+}/\Sigma Cr$ could be quantified as a function of f_{O_2} , using a theoretical expression, from as few as three samples ($Cr^{2+}/\Sigma Cr \approx 0, 0.5, \text{ and } 1$). This allowed log *K'*, or the reduction potential of the $Cr^{3+/2+}$ half-reaction, and hence the relative change in the ratio $\gamma_{Cr^{3+}O_{1.5}}^{\text{melt}}/\gamma_{Cr^{2+}O_{2}}^{\text{melt}}$, to be determined for each composition. At constant f_{O_2} , log[Cr^{2+}/Cr^{3+}] was found to decrease linearly with increasing optical basicity. The variation in log *K'* with composition is controlled by $\gamma_{Cr^{3+}O_{1.5}}^{\text{melt}}$, corresponding to the capacity of the melt to stabilize both the charge and the preferred solvation site of Cr^{3+} . The method was then applied to spectra recorded in situ at 1400 °C for a synthetic mid-ocean ridge basalt (MORB) composition, allowing $Cr^{2+}/\Sigma Cr$ to be quantified in a Fe-bearing melt for the first time. $Cr^{2+}/\Sigma Cr$ was found to vary from ~0.45 at the nickel-nickel oxide (NNO) f_{O_2} buffer to ~0.90 at iron-wüstite (IW). This indicates that Cr^{2+} is likely to be the dominant oxidation state in terrestrial basaltic melts.

Keywords: XANES spectroscopy, chromium oxidation states, silicate melts, MORB