Matioliite, the Mg-analog of burangaite, from Gentil mine, Mendes Pimentel, Minas Gerais, Brazil, and other occurrences

DANIEL ATENCIO,^{1,*} JOSÉ M.V. COUTINHO,¹ YVONNE P. MASCARENHAS,² AND JAVIER A. ELLENA²

¹Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 São Paulo, SP, Brazil ²Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil

ABSTRACT

Matioliite, ideally NaMgAl₅(PO₄)₄(OH)₆·2H₂O, occurs as a secondary hydrothermal mineral in the Gentil mine granite pegmatite, Mendes Pimentel Co., Minas Gerais, Brazil. Some crystals are zoned to more Fe-rich compositions with an Fe²⁺:Mg ratio of approximately 1:1, corresponding to an intermediate member of the burangaite-matioliite solid-solution series. Matioliite is intimately associated with fluorapatite, crandallite, and zoned gormanite-souzalite cystals. The mineral forms prismatic to tabular crystals, up to 1 mm long. Matioliite is transparent and displays a vitreous luster; it is blue to colorless with a white streak. It is non-fluorescent. Mohs hardness is about 5. Calculated density is 2.948 g/cm³. Matioliite is biaxial negative, $\eta_{\alpha} = 1.597(2)$, $\eta_{\beta} = 1.627(2)$, $\eta_{\gamma} = 1.632(1)$ (white light), 2V (meas.) = 43(2)°, 2V (calc.) = 44°, dispersion r > v, orientation $X = \mathbf{b}$, $Z^{\wedge} \mathbf{c} = 6^{\circ}$. Pleochroism is Y > X > Z, X = light blue to colorless, Y = blue, Z = colorless. The empirical formula is $(Na_{0.94}Ca_{0.01})_{50.95}$ $(Mg_{0.88}Fe_{0.11}^{+1}Mn_{0.01})_{\Sigma 1.00}(Al_{4.84}Fe_{0.13}^{+1})_{\Sigma 4.97}(PO_4)_{4.03}(OH)_{5.76} \cdot 2H_2O$. The mineral is monoclinic, space group $C_{2/c}$, a = 25.075(1) Å, b = 5.0470(3) Å, c = 13.4370(7) Å, $\beta = 110.97(3)^{\circ}$, V = 1587.9(4) Å³, Z = 4. Crystal-structure determination was carried out and showed it is isostructural with burangaite, dufrénite, and natrodufrénite. Both the description and the name were approved by the CNMMN-IMA (Nomenclature Proposal 2005-011). The "magnesium analog of burangaite" described from the Gold Quarry mine, Carlin-trend, Eureka County, Nevada; "burangaite" from Hochgosch, Millstätter See-Rücken, Kärnten, Austria; and "burangaite" described from Córrego Pomarolli, Linópolis, Divino das Laranjeiras, Minas Gerais, Brazil, are probably matioliite.

Keywords: Matioliite, new mineral, crystal structure, burangaite, chemical composition, Gentil mine, Mendes Pimentel, Brazil