American Mineralogist, Volume 91, pages 1089-1093, 2006

Ba(NpO₂)(PO₄)(H₂O), its relationship to the uranophane group, and implications for Np incorporation in uranyl minerals

TORI Z. FORBES AND PETER C. BURNS*

Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A

ABSTRACT

Single crystals of Ba(NpO₂)(PO₄)(H₂O) were obtained using hydrothermal synthesis techniques. The structure was determined using single-crystal X-ray diffraction data collected using MoK α radiation and an APEX II CCD detector and was refined on the basis of F^2 for all unique data to $R_1 = 2.41\%$. Ba(NpO₂)(PO₄)(H₂O) crystallized in monoclinic space group $P2_1/n$ with a = 6.905(3), b = 7.108(3), c = 13.321(6) Å, $\beta = 105.02^\circ$, and V = 631.4 Å³. The structure contains chains of edge-sharing neptunyl pentagonal bipyramids that link through phosphate tetrahedra to form infinite sheets. This sheet-type is identical to the anion topology of the uranophane group, in particular to that of oursinite, Co[(UO₂)(SiO₃OH)]₂(H₂O)₆. Similarities between Ba(NpO₂)(PO₄)(H₂O) and the uranophane group of minerals suggests a charge-balancing mechanism for incorporation of Np⁵⁺ into uranyl minerals.

Keywords: Neptunium, uranyl mineral, uranophane, nuclear waste, crystal structure, actinide