The crystal structure of piergorite-(Ce), $Ca_8Ce_2(Al_{0.5}Fe_{0.5}^{3+})_{\Sigma 1}(\Box,Li,Be)_2Si_6B_8O_{36}(OH,F)_2$: A new borosilicate from Vetralla, Italy, with a modified hellandite-type chain

MASSIMO BOIOCCHI,^{1,2,*} ATHOS CALLEGARI,^{2,3} AND LUISA OTTOLINI³

¹Centro Grandi Strumenti, Università degli Studi di Pavia, via Bassi 21, I-27100 Pavia, Italy ²Dipartimento di Scienze della Terra, Università degli Studi di Pavia, via Ferrata 1, I-27100 Pavia, Italy ³CNR—Istituto di Geoscienze e Georisorse (IGG), Sede di Pavia, via Ferrata 1, I-27100 Pavia, Italy

ABSTRACT

Piergorite-(Ce) is a new mineral found at Tre Croci, Vetralla, Italy with simplified formula Ca₈Ce₂ (Al_{0.5}Fe³⁺_{0.5})_{E1}(\Box ,Li,Be)₂Si₆B₈O₃₆(OH,F)₂. It occurs as strong intergrowths of small crystals, colorless to pale yellow, associated with sanidine, mica, magnetite, rutile, titanite, and other Th-U-REE bearing minerals, in miarolitic cavities of a syenitic ejectum. Piergorite-(Ce) is biaxial negative, $n_{\alpha} = 1.717$ (1), $n_{\beta} = 1.728$ (1), and $n_{\gamma} = 1.735$ (1), $2V_{\text{meas}} = 68(2)^{\circ}$, $X = \mathbf{b}$, and $Z^{\wedge} \mathbf{c} = 7(1)^{\circ}$. Crystals show tabular habit and a very good {010} cleavage; twinning along the (301) plane produces "L" forms. The three strongest lines in the simulated powder diffraction pattern (d_{obs} , I, hkl) are: 2.65 Å, 100.0, (213, $\overline{4}13$); 1.91 Å, 48.3, (223, $\overline{4}23$, 821); 2.90 Å, 44.9, ($\overline{6}03$, $\overline{6}12$). The structure was solved by Patterson synthesis from X-ray diffraction data [monoclinic, space group P2/a, a = 28.097(3) Å, b = 4.777(1) Å, c = 10.236(2) Å, $\beta = 96.81(1)^{\circ}$, V = 1364.2(7) Å³, Z = 2] and was refined to a final $R_{obs} = 0.059$ for 6480 *F* o with $I_o > 3\sigma(I_o)$. The structure shows similarities with the hellandite group because Si and B tetrahedra form chains along **c**. Hellandite structure is characterized by a single chain of five-membered rings, whereas piergorite-(Ce) shows a double chain of five-membered rings interconnected by a single octahedral site to form a three-dimensional framework containing five independent eightfold-coordinated M sites and a partly occupied T-cavity.

Keywords: New mineral, piergorite-(Ce), borosilicate, crystal structure, SIMS, hellandite