Aluminum substitution in stishovite and MgSiO₃ perovskite: High-resolution ²⁷Al NMR

JONATHAN F. STEBBINS,^{1,*} LIN-SHU DU,¹ KIMBERLY KELSEY,¹ HIROSHI KOJITANI,² MASAKI AKAOGI,² AND SHIGEAKI ONO³

¹Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115, U.S.A. ²Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan ³Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka-shi, Kanagawa 237-0061, Japan

ABSTRACT

Aluminum is an important minor constituent of a number of high-pressure mantle silicates in which it substitutes for octahedrally coordinated silicon. In several cases, its solid solution may be linked to the presence of oxygen vacancies; in others, to charge balance with H⁺. Here we present new data from high-resolution, high-field (18.8 Tesla) ²⁷Al NMR of aluminous stishovite and of a non-stoichiometric perovskite with nominal composition MgSi_{0.95}Al_{0.05}O_{2.975}. For the stishovite, we characterize the local structure of the symmetrical, octahedral site for Al. These results, combined with ²⁷Al{¹H} REDOR NMR, are consistent with hypothesized H⁺ charge balance, although the presence of a significant fraction of randomly distributed oxygen vacancies could remain undetected. As in a recent previous study of a related perovskite composition, the observed ratio of Al at symmetrical octahedral B sites to that of Al at large, central A sites is about 2:1, indicating the presence of oxygen vacancies to account for charge neutrality in this phase. Such vacancies are not preferentially associated with the Al octahedra, however, suggesting a random distribution in the structure.

Keywords: High-pressure studies, perovskite, stishovite, NMR spectroscopy, crystal structure, phase equilibria