Synthetic *P2*₁/*m* amphiboles in the system Li₂O-Na₂O-MgO-SiO₂-H₂O (LNMSH)

GIANLUCA IEZZI,^{1,*} GIANCARLO DELLA VENTURA,² AND MARIO TRIBAUDINO³

¹Dipartimento di Scienze della Terra, Università G. D'Annunzio, I-66013 Chieti Scalo, Italy ²Dipartimento di Scienze Geologiche, Università di Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Roma, Italy ³Dipartimento di Scienze della Terra, Università di Parma, Parco Area delle Scienze 157/A, I-43100 Parma, Italy

ABSTRACT

We describe here the synthesis of amphiboles along the nominal Na(NaMg)Mg₅Si₈O₂₂(OH)₂– Na(LiMg)Mg₅Si₈O₂₂(OH)₂ join, at 800 °C, 0.4 GPa. High amphibole yields (>90%) plus minor quartz and enstatite have been obtained at all compositions; amphibole crystals are acicular and their size rarely exceeds 20–30 × 0.5–3 µm. TEM analysis shows the presence of *h*+*k* odd reflections in all samples, indicative of a *P*-lattice. By similarity with closely related amphiboles from the literature (e.g., Oberti et al. 2000; Cámara et al. 2003) a *P*₂₁/*m* space group was assigned to the amphiboles synthesized here. Refined cell-parameters from X-ray powder-patterns show a linear decrease as a function of increasing Li at M4, *a* and β being the most affected parameters. The four infrared OH-stretching spectra all show two main bands at 3741–3748 and 3712–3716 cm⁻¹, respectively. They are assigned to two independent O-H groups in the *P*₂₁/*m* structure, interacting with a strongly delocalized ^ANa. The spectra show in addition two minor absorptions at about 3688 and 3667 cm⁻¹, respectively; these bands are assigned to vacant A-sites in the structure and indicate slight departure of the nominal composition toward cummingtonite. The present work shows that one apfu of ^BNa can also be completely replaced by one apfu of ^BLi (M⁺), in synthetic Na(M⁺Mg)Mg₅Si₈O₂₂(OH)₂, and that all compositions have *P*₂₁/*m* symmetry at ambient conditions.

Keywords: amphibole synthesis, FTIR spectroscopy, TEM, XRPD, amphibole symmetry