American Mineralogist, Volume 91, pages 327-332, 2006

Equation of state and phase transition in KAlSi₃O₈ hollandite at high pressure

TRISTAN FERROIR,¹ TSUYOSHI ONOZAWA,² TAKEHIKO YAGI,^{2,*} SEBASTIEN MERKEL,² Nobuyoshi Miyajima,² Norimasa Nishiyama,³ Tetsuo Irifune,³ and Takumi Kikegawa⁴

¹Ecole Normale Superieure de Lyon, 69364 Lyon cedex 07, France ²Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan ³Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan ⁴Photon Factory, KEK, Tsukuba, Ibaraki 305-0801, Japan

ABSTRACT

The tetragonal hollandite structure (KAlSi₃O₈ hollandite) has been studied up to 32 GPa at room temperature using high-pressure in-situ X-ray diffraction techniques. A phase transformation from tetragonal *I4/m* phase to a new phase was found to occur at about 20 GPa. This transition is reversible on release of pressure without noticeable hysteresis and hence this new high-pressure phase is unquenchable to ambient conditions. The volume change associated with the transition is found to be small (not measurable), suggesting a second order transition. The diffraction pattern of the high-pressure phase can be indexed in a monoclinic unit cell (space group *I2/m*), which is isostructual with BaMn₈O₁₆ hollandite. The γ angle of the monoclinic unit cell increases continuously above the transition. A Birch-Murnaghan equation of state fit to pressure-volume data obtained for KAlSi₃O₈ hollandite yields a bulk modulus $K_0 = 201.4$ (7) GPa with $K_0 = 4.0$.