American Mineralogist, Volume 91, pages 658-666, 2006

Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates KARRIE-ANN KUBATKO,¹ KATHERYN HELEAN,² ALEXANDRA NAVROTSKY,² AND PETER C. BURNS^{1,*}

¹Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, U.S.A. ²Thermochemistry Facility and NEAT ORU, University of California at Davis, One Shields Avenue, Davis, California 95616, U.S.A.

ABSTRACT

The enthalpies of formation of seven uranyl oxide hydrate phases and one uranate have been determined using high-temperature oxide melt solution calorimetry: $[(UO_2)_4O(OH)_6](H_2O)_5$, metaschoepite; β -UO₂(OH)₂; CaUO₄; Ca(UO₂)_6O₄(OH)_6(H₂O)₈, becquerelite; Ca(UO₂)_4O₃(OH)_4(H₂O)₂; Na(UO₂)O(OH), clarkeite; Na₂(UO₂)_6O₄(OH)_6(H₂O)₇, the sodium analogue of compreignacite, and Pb₃(UO₂)₈O₈(OH)₆(H₂O)₂, curite. The enthalpy of formation from the binary oxides, ΔH_{fox} , at 298 K was calculated for each compound from the respective drop solution enthalpy, ΔH_{ds} . The standard enthalpies of formation from the elements, ΔH_f^o , at 298 K are $-1791.0 \pm 3.2, -1536.2 \pm 2.8, -2002.0 \pm 3.2, -11389.2 \pm 13.5, -6653.1 \pm 13.8, -1724.7 \pm 5.1, -10936.4 \pm 14.5,$ and -13163.2 ± 34.4 kJ/mol, respectively. These values are useful in exploring the stability of uranyl oxide hydrates in auxiliary chemical systems, such as those expected in U-contaminated environments.

Keywords: Calorimetry, becquerelite, enthalpy, compreignacite, metaschoepite, uranyl, curite, uranium