Elastic behavior, phase transition, and pressure induced structural evolution of analcime

G. DIEGO GATTA,^{1,2,*} FABRIZIO NESTOLA,^{2,3} AND TIZIANA BOFFA BALLARAN²

¹Dipartimento di Scienze della Terra, Universita' degli Studi di Milano, Via Botticelli 23, I-20133 Milano, Italy

²Bayerisches Geoinstitut, Universitaet Bayreuth, Universitaetsstrasse 30, D-95447 Bayreuth, Germany

³Crystallography Laboratory, Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, U.S.A.

ABSTRACT

Elastic and structural behavior of a natural cubic analcime (space group: $Ia\overline{3}d$) from Sardinia (Italy) was investigated at high pressure by in situ single-crystal X-ray diffraction. A first-order phase transition is observed in the pressure range between 0.91(5) and 1.08(5) GPa. Unit-cell constants and reflection conditions confirm that the space group of the HP-polymorph is $P\overline{1}$. No further phasetransition has been observed at least up to 7.14 GPa. Fitting the volume data of the cubic polymorph with a second-order BM-EoS we obtain: $V_0 = 2571.2(4)$ Å³, $K_{TD} = 56(3)$ GPa, and K' = 4 (fixed). For the triclinic polymorph, a third-order EoS gives: $V_0 = 2607(9)$ Å³, $K_{T0} = 19(2)$ GPa, and K' = 6.8(7). Axial bulk moduli of the triclinic polymorph, calculated with a linearized BM-EoS, are: $K_{T0}(a) =$ 29(2) GPa, with K'(a) = 4.9(6) and $a_0 = 13.727(10)$ Å; $K_{T0}(b) = 20(1)$ GPa, with K'(b) = 5.2(5), and b_0 = 13.751(15) Å; $K_{T0}(c) = 11(1)$ GPa, with K'(c) = 12.6(6) and $c_0 = 13.822(31)$ Å. The elastic behavior of the HP-polymorph appears to be strongly anisotropic, being $K_{T0}(a)$: $K_{T0}(b)$: $K_{T0}(c) = 2.64$:1.82:1.00. The relevant structural variations in response to the cubic \rightarrow triclinic phase transition are due to tetrahedral tilting. The tetrahedral framework distortion gives rise to a change of the eight- and six-ring channels ellipticity and of the extra-framework topological configuration: it appears in fact that for the high-pressure triclinic polymorph the coordination number of some of the Na atoms is seven (2H₂O + five framework O atoms) instead of six $(2H_2O + \text{four framework O atoms})$.

Key words: Analcime, zeolite, high-pressure, compressibility, phase transition