American Mineralogist, Volume 90, pages 1500-1505, 2005

Effects of high pressure and high temperature on cation ordering in magnesioferrite, MgFe₂O₄, using in situ synchrotron X-ray powder diffraction up to 1430 K and 6 GPa

SYTLE M. ANTAO,^{1,*} ISHMAEL HASSAN,² WILSON A. CRICHTON,³ AND JOHN B. PARISE¹

¹Mineral Physics Institute and Department of Geosciences, State University of New York, Stony Brook, New York 11794-2100, U.S.A. ²Department of Chemistry, University of the West Indies, Mona, Kingston 7, Jamaica ³European Synchrotron Radiation Facility, BP 220, F 38043 Grenoble, France

ABSTRACT

Disorder in stoichiometric magnesioferrite, MgFe₂O₄, was determined from in situ synchrotron powder X-ray diffraction data [$\lambda = 0.3738(4)$ Å] at 6, 5, and 3 GPa and temperatures up to 1430 K. The *a* unit-cell parameter increases linearly on heating at the three different pressures. Higher pressures cause a smaller cell volume, as expected. Cation order was analyzed in terms of the inversion parameter, x, {^{iv}[Mg_{1-x}Fe_x]^{vi}[Mg_{x2}Fe_{1-x2}]₂O₄} and the order parameter Q = 1 - (3/2)x. As pressure increases, the inversion parameter increases in inverse MgFe₂O₄ spinel. O'Neill and Navrotsky (1983) and Landau models were used to describe the equilibrium non-convergent ordering process in MgFe₂O₄, and they both fit the data well.