High-resolution ¹⁷O MAS NMR spectroscopy of forsterite (α-Mg₂SiO₄), wadsleyite (β-Mg₂SiO₄), and ringwoodite (γ-Mg₂SiO₄)

SHARON E. ASHBROOK,¹ ANDREW J. BERRY,² WILLIAM O. HIBBERSON,² STEFAN STEUERNAGEL,³ AND STEPHEN WIMPERIS^{4,*}

¹Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.
²Research School of Earth Sciences, Australian National University, Canberra ACT 0200, Australia
³Bruker BioSpin GmbH, Am Silberstreifen, 76287 Rheinstetten, Germany
⁴Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.

ABSTRACT

The high sensitivity of the satellite-transition (ST) MAS NMR technique was exploited to obtain high-resolution ¹⁷O MAS NMR spectra of the three polymorphs of Mg₂SiO₄: forsterite (α -Mg₂SiO₄), wadsleyite (β -Mg₂SiO₄), and ringwoodite (γ -Mg₂SiO₄). High NMR sensitivity was important in this application because ¹⁷O-enriched, Fe-free materials are required for ¹⁷O NMR and high-pressure syntheses of the dense β and γ polymorphs result in a only a few milligrams of these solids. In all, eight distinct O species were identified and assigned: three in forsterite, four in wadsleyite, and one in ringwoodite, in agreement with the number of O sites in their crystal structures. The isotropic chemical shifts extracted are in excellent agreement with a previously published correlation with Si-O bond length. However, unexpectedly large quadrupolar coupling constants were found for the non-bridging O species in the dense polymorphs wadsleyite and ringwoodite.