The crystal-chemistry of holmquistites: Ferroholmquistite from Greenbushes (Western Australia) and hints for compositional constraints in \(^{6}\text{Li}\) amphiboles

FERNANDO CÁMARA and **ROBERTA OBERTI**

CNR-Istituto di Geoscienze e Georisorse, via Ferrata 1, I-27100 Pavia, Italy

ABSTRACT

A systematic crystal-chemical investigation of orthorhombic holmquistites has been done to determine the reasons for their limited compositional variations. Structural constraints to the relative stability of \(^{6}\text{Li}\) amphiboles are also suggested by the occurrence of ferro- and ferri-ferroclinoholmquistites, and the lack of clinoholmquistite. Detailed crystal-chemical analysis shows: (1) a remarkable constancy in composition, both in terms of charge arrangement and of limited homovalent \(^{6}\text{Li}\)(Mg,Fe\(^{3+}\)), \(^{6}\text{Li}\)(Al,Fe\(^{3+}\)), and \(^{6}\text{Li}\)(OH,F) exchanges, (2) a remarkable constancy in the unit-cell dimensions, with the Fe\(^{3+}\) content at the M2 site being the only factor affecting the b edge; (3) complete ordering of Li at the M4 site, in contrast with the common partitioning between the M4 and M3 sites in clinoholmquistites, which however couples with partial A-site occupancy; (4) complete ordering of trivalent cations at the M2 site; (5) an inverse relationship between the Fe\(^{2+}\) and the Fe\(^{3+}\) contents, which is interpreted as a way to keep the size of the octahedral strip constant; (6) a strong distortion of the octahedral sites, both in terms of angular variance and quadratic elongation.

\(^{\text{\textcopyright}}\text{Li}\)(Mg,Al\(_{3}\))\(_{T}\)Si\(_{8}\)O\(_{22}\)(OH\(_{1.97}F_{0.03}\)) is the amphibole composition composed of the smallest possible structural moduli. Crystallization in \(\text{Pnma}\) symmetry, where the two double-chains of tetrahedra can assume different conformations, is probably required by the need to obtain a more suitable [5 + 1]-coordination for \(^{6}\text{Li}\), and to shrink the cation-cation distances. This arrangement does not allow for extensive incorporation of larger homovalent substituents, which are hosted via mechanisms implying distortion of the octahedral sites.

During this work, a sample with Fe\(^{3+}\) slightly but significantly higher than Mg was characterized, and then recognized as a mineral species by the IMA-CNMMN (2004-030). Holotype ferroholmquistite has \(a = 18.287\text{ (1)}, b = 17.680\text{ (1)}, \text{ and } c = 5.278\text{ (1) Å, and } V = 1706.6(1)\text{ Å}^3\). Its crystal-chemical formula is \(\text{AK}_{0.01}\text{Na}_{0.01} \text{B(Li}_{1.88}\text{Mg}_{0.08}\text{Na}_{0.03}\text{Fe}_{2+})_{0.93} (\text{Al}_{1.89}\text{Fe}_{0.11}^3\text{Mg}_{1.39}\text{Mn}_{0.02}) \text{Si}_{8}\text{O}_{22}(\text{OH}_{1.97}\text{F}_{0.03})\). Ferroholmquistite occurs as elongated black to bluish-violet prismatic crystals; it is biaxial negative, with \(\alpha = 1.628, \beta = 1.646, \gamma = 1.651 (\lambda = 589 \text{ nm}), 2V^\prime (\text{calc.}) = 55.1^\circ\). It is weakly pleochroic, with \(\alpha = \text{colorless}, \beta = \text{pale violet-blue}, \text{ and } \gamma = \text{blue to deep violet}; \text{ the calculated density is } 3.145 \text{ g/cm}^3\). The holotype specimen belongs to the mineral collection of Renato and Adriana Pagano (Italy), and comes from the Greenbushes pegmatite (Western Australia). The analyzed sample has been deposited at the Museum of the Dipartimento di Scienze della Terra, Università di Pavia (Italy) under the code 2004-01.

INTRODUCTION

The root name holmquistite defines a series of orthorhombic \(\text{Pnma}\) Group 1 amphiboles whose compositions can be expressed as \(\text{Li}_{x}\text{Si}_{y}\text{O}_{z}\text{Fe}_{2+}\text{Al}_{3}^3\text{Mg}_{4}^2\text{Ca}_{x}\text{Na}_{y}\text{K}_{z}\). Holmquistites are rather rare amphiboles, and generally occur at the contact between lithium-rich pegmatites and country rocks; their formation has always been ascribed to metasomatism around highly fractionated lithium-rich pegmatites that intrude amphibolites (cf. London 1986 and Deer et al. 1997 for useful reviews). Notably, London (1986) first proposed that the occurrence of holmquistite might be used as a tool for pegmatite exploration.

The few available chemical analyses of holmquistites show a remarkable constancy in composition (see Deer et al. 1997 for a complete list). We re-calculated analyses nos. 10 and 14 based on more reasonable water contents and group-cation sums, compared all the data and noticed that (1) \(^6\text{Al}\) is always very low, (2) \(^6\text{Al}\) (+ very minor \(^{3+}\text{Fe}\) and \(^{3+}\text{Ti}\) contents) is always close to 2.0 atoms per formula unit (apfu), and (3) \(^6\text{Ca}, \text{ }^{6}\text{Na}, \text{ and } {^{6}}\text{K}\) are always very low or negligible. In particular, analysis no. 10 (from Alexander County, South Carolina; Palache et al. 1930) is the one most deviating from the ideal charge arrangement, having \(^6\text{Al} = 0.46, ^6\text{Ca} = 0.19, \text{ and } ^6\text{K} = 0.13 \text{ apfu}\). Analysis no. 14 (from the Sayan Mountains, former USSR; Khvostova 1958), although suffering from analytical problems possibly implying overestimation of the Si and water contents, is the only one with \(^{3+}\text{Fe} > \text{Mg}\).

Few structural and crystal-chemical data are available for holmquistite. Holmquistite from Mtoko (Zimbabwe) was studied by Whittaker (1969), Irusteta and Whittaker (1975), and Law and Whittaker (1981), who provided structure refinements, Mössbauer analysis, and IR spectroscopy. Although the original analysis...