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INTRODUCTION

From the pioneering studies of Kats (1962) and Brunner 
et al. (1961), it is known that nominally anhydrous minerals 
(NAMs) such as quartz may incorporate traces of H in the form 
of hydroxyl groups. Since this discovery, the incorporation of 
H in NAMs has become an important Þ eld in experimental pe-
trology because the amount of hydrogen may have signiÞ cant 
effects on the physical properties of NAMs, such as the rheo-
logical behavior (hydrolytic weakening), the melting behavior, 
and the transformation kinetics of minerals (e.g., Griggs and 
Blacic 1965; Karato et al. 1986; Kubo et al. 1998; Mosenfelder 
et al. 2001). Recent experimental studies show that coesite, the 
high-pressure polymorph of quartz, incorporates up to 200 wt 
ppm H2O into its structure (Li et al. 1997; Mosenfelder 2000; 
Koch-Müller et al. 2001). However, all coesites that are found 
in nature are dry, i.e. their OH-concentration is below the detec-
tion limit of about 1 wt ppm H2O (Rossman and Smyth 1990; 
Mosenfelder 1997, 1999; Mosenfelder and Schertl 2003) with 
only one exception (Koch-Müller et al. 2003). Koch-Müller et 
al. (2003) estimated the water content of this natural coesite as 
135 ± 45 wt ppm H2O.

Besides being found in impact-metamorphosed rocks, coesite 
occurs mainly in xenoliths from the lithospheric mantle (e.g., 

Smyth 1977; Sobolev et al. 2000; Schulze and Helmstaedt 
1988) and in eclogites from subducted crust (e.g., Smith 1984; 
Chopin 1984; Gillet et al. 1984), i.e., in ultra-high-pressure 
rocks. In the xenoliths and eclogites, coesite occurs either as 
inclusions in a stronger host phase like diamond or zircon, or as 
close intergrowths with quartz that likely formed as a result of 
post-genetic coesite alteration. Enclosure of coesite in a strong 
host phase is an effective mechanism to preserve coesite, if the 
conÞ ning pressure is high enough, i.e., within the stability Þ eld 
of coesite (Sobolev et al. 1976, 1994). Indeed, the OH-bearing 
natural coesite described by Koch-Müller et al. (2003) appears 
as an inclusion in a diamond and is still under a conÞ ning pres-
sure of at least 2.6 GPa (Sobolev et al. 2000). On the other 
hand, petrological observations in ultrahigh-pressure domains 
indicate that most coesites did not survive exhumation but trans-
formed back to quartz (e.g., Smyth 1977; Smith 1984; Chopin 
1984; Gillet et al. 1984). Currently, there is a debate whether 
the presence of water, either structurally bound in coesite, or 
part of a separate ß uid phase, enhances the transformation rate 
of coesite to quartz. Rapid transition of coesite to quartz may 
explain the lack of OH-bearing coesite that survives in nature 
(e.g., Mosenfelder and Bohlen 1997; Zinn et al. 1997). There are 
several experimental studies that deal with the transformation of 
coesite to quartz (Livshits et al.1972; Wirth and Stöckhert 1995; 
Mosenfelder and Bohlen 1997; Babich et al. 1998; Perrillat et al. 
2003), but only three of them (Mosenfelder and Bohlen 1997; * E-mail: christian.lathe@desy.de
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ABSTRACT

Metastable coesite is an important pressure indicator for ultrahigh-pressure rocks. However, in 
many cases coesite does not survive exhumation, but reacts back to quartz. Although it was shown 
experimentally that incorporation of H in coesite increases with increasing pressure, most coesite relics 
found in nature are essentially dry (i.e., OH concentrations are below detection limit, <1 wt ppm H2O). 
Thus, does the incorporation of H promote the back-reaction of coesite to quartz during exhumation? 
The inß uence of intrinsic OH on the kinetics of the coesite-quartz phase transition was determined 
using synthetic �dry� coesite with ≈ 10 wt ppm H2O and �wet� coesite with ≈ 105 wt ppm H2O. TEM 
analysis of the quenched samples proved the presence and absence of water in the �wet� and �dry� 
samples, respectively. The kinetics of the coesite-quartz transition was investigated in-situ using the 
multi-anvil apparatus MAX 80 at the Hamburger Synchrotron Radiation Laboratory (HASYLAB). 
The transition rates were measured by observing changes in selected diffraction line intensities as a 
function of time. The transformation and growth rates were derived using Cahnʼs model of nucleation 
and growth at grain boundaries. Under the same experimental conditions the transformation rate of the 
�wet� coesite is more than ten times higher than that of the �dry� coesite. This difference may explain 
why OH-bearing natural coesite is rare. This study reveals the importance of structurally bound OH 
for the kinetics of phase transitions of nominally anhydrous minerals. 


