Dellaventuraite, NaNa₂(MgMn₂³⁺Ti⁴⁺Li)Si₈O₂₂O₂, a new anhydrous amphibole from the Kajlidongri Manganese Mine, Jhabua District, Madhya Pradesh, India

KIMBERLY T. TAIT,¹ FRANK C. HAWTHORNE,^{1,*} JOEL D. GRICE,² LUISA OTTOLINI,³ AND V.K. NAYAK⁴

¹Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ²Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ³CNR-Istituto di Geoscienze e Georisorse (IGG), Sezione di Pavia, via Ferrata 1, I-27100 Pavia, Italy

⁴H-21 Gitanjali Complex, Shanti Vihar Colony, Makronia Camp, P.O. Box Saugar 470-004, India

ABSTRACT

Dellaventuraite is a new amphibole species from the Kajlidongri manganese mine, Jhabua District, Madhya Pradesh, India. It occurs with leakeite, kornite, albite, braunite, and bixbyite associated with cross-cutting epigenetic veins that have reacted with regionally metamorphosed rocks containing Mn-rich minerals (braunite, bixbyite, jacobsite, spessartine) to produce Mn-rich amphiboles, Mnrich pyroxenes, Mn-rich mica, piemontite, and manganophyllite. Dellaventuraite occurs as anhedral grains, the color of which varies from pink to red, depending on Mn content. It is brittle, H = 5, D_{calc} = 3.184 g/cm³, has a pale pink streak, vitreous luster, and does not fluoresce in ultraviolet light; it has perfect cleavage on {110} and conchoidal fracture. In transmitted plane-polarized light, dellaventuraite is strongly pleochroic, X = pale mauve-brown, $Y \sim Z = dark red-brown$; $Y \wedge a = 20^{\circ}$ (in β obtuse), Z = b, with absorption $X < Y \sim Z$. It is biaxial positive, $\eta_{\alpha} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.692 \pm 0.005$, $\eta_{\gamma} = 1.692 \pm 0.005$, $\eta_{\gamma} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.692 \pm 0.005$, $\eta_{\gamma} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.692 \pm 0.005$, $\eta_{\gamma} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.692 \pm 0.005$, $\eta_{\gamma} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.692 \pm 0.005$, $\eta_{\gamma} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.692 \pm 0.005$, $\eta_{\gamma} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.692 \pm 0.005$, $\eta_{\gamma} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.692 \pm 0.005$, $\eta_{\gamma} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.692 \pm 0.005$, $\eta_{\gamma} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.692 \pm 0.005$, $\eta_{\gamma} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.692 \pm 0.005$, $\eta_{\gamma} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.688 \pm 0.003$, $\eta_{\beta} = 1.688 \pm 0.003$, $\eta_{\gamma} =$ 1.721 ± 0.003 , $2V_{(obs)} = 49 \pm 3^{\circ}$, $2V_{(calc)} = 41^{\circ}$. Dellaventuraite is monoclinic, space group C2/m, a =9.808(1), b = 17.840(2), c = 5.2848(5) Å, $\gamma = 104.653(1)^\circ$, V = 894.6(2) Å³, Z = 2. The strongest ten X-ray diffraction lines in the powder pattern are [d(1,hkl)]: 2.697(10,151), 2.542(9,-202), 3.127(8,310), 3.378(7,131), 2.154(7,261), 1.434(7,-661), 4.450(6,021), 8.459(5,110), 2.727(5,-331), 2.328(5,-351).Analysis by a combination of electron microprobe, SIMS and crystal-structure refinement gives $SiO_2 =$ 54.22, $Al_2O_3 = 0.81$, $TiO_2 = 5.45$, $Fe_2O_3 = 6.44$, $Mn_2O_3 = 7.57$, ZnO = 0.12, NiO = 0.16, MgO = 8.26, $Li_2O = 1.53$, CaO = 1.85, $Na_2O = 8.12$, $K_2O = 2.12$, $H_2O = 0.80$, Cr, V, F, Cl not detected, sum 97.41 wt%. The formula unit, calculated on the basis of 24(O,OH,F) is $(K_{0.40}Na_{0.61})(Na_{1.71}Ca_{0.29})(Mg_{1.81}Zn_{0.01})$ $Ni_{0.02}Li_{0.90}Fe_{0.71}^{3+}Mn_{0.85}^{3+}Ti_{0.60}^{4+}Al_{0.10})(Si_{7.96}Al_{0.04})O_{22}[(OH)_{0.80}\ O_{1.20}]; \ the \ ideal \ end-member \ composition$ NaNa₂(MgMn³⁺₂LiTi⁴⁺)Si₈O₂₂O₂.

The crystal structure of dellaventuraite was refined to an *R* index of 3.8% using MoK α X-ray intensity data. The M1 site is occupied by Ti⁴⁺, Mn³⁺, and Mg in approximately equal amounts, the M2 site is occupied primarily by Mg and Fe³⁺, and M3 is occupied by Li with minor Mg and Mn²⁺. Local bond-valence considerations suggest that O²⁻ at O3 is linked to Ti⁴⁺Mg or Mn³⁺Mn³⁺ at the adjacent M1 sites, and that OH at O3 is linked to MgMg at the adjacent M1 sites.