American Mineralogist, Volume 90, pages 687-694, 2005

Temperature and composition dependence of structural phase transitions in Ca(Ti_xZr_{1-x})OGeO₄ RIKKE ELLEMANN-OLESEN AND THOMAS MALCHEREK*

Universität Heidelberg, Mineralogisches Institut, Im Neuenheimer Feld 236, 69120 Heidelberg, Germany

ABSTRACT

The solid solubility of CaTiOGeO₄ with CaZrOGeO₄ and the structural phase transitions occurring in this solid solution as a function of temperature and composition were examined using in situ high temperature X-ray powder diffraction. Structural phase transitions were identified based on the determination of spontaneous strain. The transition $P2_1/a$ -A2/a, which is typical for titanite and CaTiOGeO₄, was observed in samples with Zr concentrations up to 10%. The addition of Zr destabilizes the ordered $P2_1/a$ phase and T_c decreases accordingly. The aristotype structure of titanite in space group symmetry A2/a was observed for intermediate compounds. Compounds with high Zr contents exhibit a triclinically distorted titanite structure. Their structure was modeled in space group $A\overline{1}$. The triclinic structure appears at Zr contents of about 70% with T_c close to ambient temperature. Further increase of the Zr content stabilizes the triclinic structure and leads to an increase of T_c up to $T_c = 488$ K in CaZrOGeO₄.