American Mineralogist, Volume 90, pages 1325-1334, 2005

A high-temperature diffraction study of the solid solution CaTiOSiO₄-CaTiOGeO₄

RIKKE ELLEMANN-OLESEN AND THOMAS MALCHEREK*

Mineralogisches Institut, Universität Heidelberg, Im Neuenheimer Feld 236, D-69120 Heidelberg, Germany

ABSTRACT

The structure of CaTiOGeO₄ (CTGO) has been refined using single crystal X-ray diffraction data. CTGO is isostructural with titanite, CaTiOSiO₄. The displacive $P_{1/a}$ - $A_{2/a}$ phase transition analogous to titanite has been studied by in situ heating X-ray powder diffraction and transmission electron microscopy. The transition is accompanied by the disappearance of superstructure reflections, k + l = 2n + 1, which are replaced by diffuse scattering for $T > T_c$. The diffuse scattering is seen as streaks along **b*** in high-temperature TEM SAD. Lattice parameters as a function of temperature and composition were determined by X-ray powder diffraction between room temperature and a maximum of 1123 K. Strain analysis of CTGO indicates a transition temperature of $T_c = 588 \pm 4$ K and the additional occurrence of an isosymmetric anomaly at $T_i = 800 \pm 25$ K. There is complete solid-solution along the join CaTiO(Ge_xSi_{1-x})O₄. The lattice parameters across the solid solution vary continuously and the structural phase transitions were identified based on the determination of spontaneous strain associated with the transitions. The e_{11} and e_{13} components dominate the strain tensor. All compositions across the solid solution exhibit close to tricritical behavior and nearly constant scalar strain.