Synthesis and crystal-chemistry of alkali amphiboles in the system Na₂O-MgO-FeO-Fe₂O₃-SiO₂-H₂O as a function of f_{O_2}

GIANCARLO DELLA VENTURA,^{1,*} GIANLUCA IEZZI,^{2,†} GÜNTHER J. REDHAMMER,³ FRANK C. HAWTHORNE,⁴ BRUNO SCAILLET,⁵ AND DANIELA NOVEMBRE⁶

¹Dipartimento di Scienze Geologiche, Università di Roma Tre, Largo S. Leonardo Murialdo 1, I-00146, Italy
²Bayerisches GeoInstitut, Bayreuth, Germany
³Institute of Crystallography, Rheinisch-Westfälische-Technische Hochschule Aachen, Jägerstrasse 17-19, D-52056 Aachen, Germany
⁴Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
⁵ISTO, UMR 6113, 1A, Rue de la Férollerie, F-45071 Orléans Cedex 2, France
⁶Dipartimento di Scienze della Terra, Università "G. D'Annunzio," I-66013 Chieti Scalo, Italy

ABSTRACT

This paper reports the results of hydrothermal synthesis in the system Na₂O-MgO-FeO-Fe₂O₃-SiO₂-H₂O. Four samples of stoichiometric magnesioriebeckite composition, ideally \Box Na₂Mg₃Fe₃³⁺Si₈O₂₂(OH)₂, were run at 700-800 °C, 0.4 GPa, and redox conditions varying from NNO (Nickel-Nickel Oxide) to NNO + 2.3 log $f_{0,2}$. Powder XRD and SEM-EDX show a high (>85%) amphibole yield for all samples; however, in no case was the end-member composition attained. EMP analyses show that the amphiboles obtained deviate strongly from nominal stoichiometry toward magnesio-arfvedsonite $[NaNa_2Mg_4Fe^{3+}Si_8O_{22}(OH)_2]$. Powder XRD patterns were indexed in the space group C2/m; refined cell-parameters reflect variations in the amphibole composition, and the cell volume is correlated linearly with the A-site occupancy. Mössbauer spectra show that in all samples, Fe^{3+} is completely ordered at M2, whereas Fe²⁺ occurs at the M1, M3, and M4 sites. The Fe³⁺/Fe²⁺ ratio is a function of $f_{\rm O}$; for increasing oxidation conditions, there is significant increase in $^{\rm M2}{\rm Fe}^{3+}$ and decrease in Fe²⁺, notably in M4Fe²⁺. Mössbauer spectra also show significant variation in M1Fe²⁺ and M3Fe²⁺ quadrupole splitting as a function of the Fe³⁺ content in the amphibole. IR spectra in the OH-stretching region show a well-resolved quadruplet at frequencies $<3680 \text{ cm}^{-1}$, assigned to octahedral ^{M1,3}(Mg, Fe²⁺)-OH-^A configurations, and a broad band consisting of four overlapping components related to M1.3(Mg, Fe²⁺) configurations associated with occupied A-sites. Quantitative evaluation of the relative band intensities suggests a linear increase of A-site occupancy with decreasing f_{0_2} of synthesis. The composition of the amphiboles synthesized, can be best described by a combination of the C(Mg,Fe²⁺)₁ ^B(Mg,Fe²⁺)₁ $^{C}Fe_{-1}^{3+} ^{B}Na_{1}$ and the $^{A}Na_{1} ^{C}(Mg, Fe^{2+})_{1} ^{A}\square_{1} ^{C}Fe_{-1}^{3+}$ exchange vectors. The experimental trend is in accord with the trend documented for natural amphiboles, and suggests that the amphibole composition can in fact be used to monitor changes in f_{O_2} during crystallization.