Coupling between non-convergent ordering and transition temperature in the $C2/c \leftrightarrow P2_1/c$ phase transition in pigeonite

FERNANDO CAMARA,^{1,*} MICHAEL A. CARPENTER,² M. CHIARA DOMENEGHETTI,³ AND VITTORIO TAZZOLI³

¹CNR-Istituto di Geoscienze e Georisorse, sezione di Pavia, via Ferrata 1, I-27100 Pavia, Italy ²Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K. ³Dipartimento Scienze della Terra, Università di Pavia, Via Ferrata 1, I-27100 Pavia, Italy

ABSTRACT

A Landau potential with linear-quadratic coupling has been developed to describe interactions between a non-convergent order parameter, $Q_{\rm OD}$, for Fe/Mg ordering, and the order parameter, $Q_{\rm D}$, for the $C_2/c_2P_1/c_2$ phase transition in pigeonite. Spontaneous strain relationships, and expressions for the effect of ordering on the transition temperature derived from this expansion, have been tested by single crystal X-ray diffraction methods. Lattice parameters collected from a natural pigeonite crystal with composition En₄₇Fs₄₄Wo₉, in situ at temperatures up to 1050 °C, reveal that increasing $Q_{\rm OD}$ could act to suppress $Q_{\rm D}$ by a mechanism which includes overlapping and opposing strain fields. In a second experiment, the intensities of superlattice reflections (h + k = 2n + 1) were followed in situ at temperatures up to 500 °C. The crystal was heated ex situ successively at 700, 750, 800, and 850 °C between repeated in situ measurements in order to produce changes in the degree of cation order. The resulting data sets, giving the temperature dependence of Q_D^2 for different fixed values of $Q_{\rm OD}$, are consistent with the initial Landau model. In particular, they show a strong and linear dependence of transition temperature on $Q_{\rm OD}$. The fourth order coefficient of the expansion describing the phase transition is perhaps also renormalized by changes in $Q_{\rm OD}$. It is suggested that the influence of $Q_{\rm OD}$ on the phase transition could be greater than the influence of the phase transition on the equilibrium variation of $Q_{\rm OD}$.