Influence of F content on the composition of Al-rich synthetic phlogopite: Part I. New information on structure and phase-formation from ²⁹Si, ¹H, and ¹⁹F MAS NMR spectroscopies

MICHAEL FECHTELKORD,^{1,*} HARALD BEHRENS,¹ FRANÇOIS HOLTZ,¹ COLIN A. FYFE,² LEE A. GROAT,³ AND MATI RAUDSEPP³

¹Institut für Mineralogie, Universität Hannover, Welfengarten 1, 30167 Hannover, Germany ²The University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, B.C., V6T 1Z1, Canada ³The University of British Columbia, Department of Earth and Ocean Sciences, 6339 Stores Road, Vancouver, B.C., V6T 1Z4, Canada

ABSTRACT

The influence of F content on the formation and stability of Al-rich phlogopite has been investigated. Samples with varying OH/F-ratios and nominal gel compositions of $K(Mg_{3,x}Al_y)(Al_{1+x}Si_{3,y}O_{10})(OH)_y$ $(F)_{2-y}$ (0.0 $\leq x \leq 0.8$ and 0.5 $\leq y \leq 1.8$) were studied using ²⁹Si, ¹H, and ¹⁹F MAS NMR spectroscopies, powder X-ray diffraction, electron-probe microanalysis, and scanning electron microscopy. The synthetic phlogopites were synthesized from sol-gels in cold-seal pressure vessels at 1073 K, 2 kbar. The main phase (phlogopite) and three other impurity phases [corundum (α -Al₂O₃), kalsilite (KAlSiO₄), and potassium aluminum hexafluoride (K₃AlF₆ \cdot 0.5H₂O)] were clearly identified by powder X-ray diffraction and electron-probe microanalysis. For phlogopite, the unit-cell parameters a_0 and b_0 decrease whereas c_0 increases with increasing Al-content (x). The average crystal size of phlogopite is about 1–2 µm. The ²⁹Si MAS NMR spectra show up to four resonances at approximately -91, -87, -83, and -80 ppm, which can be assigned as $Q^3(n \text{ Al})$ signals with n = 0-3. The ideal Si/IVAl ratio calculated from the initial composition is always lower than that derived experimentally. Hydroxyl-rich compositions indicate an increased Al-content in the tetrahedral sheets, suggesting a stabilizing effect on the formation of Al-rich phlogopite. These conclusions are supported by ¹H and ¹⁹F MAS NMR spectra. The ¹H MAS NMR spectra show a water signal at 4.7 ppm, a signal due to Mg₂AlOH at 1.8 ppm, and a signal due to Mg₃OH at 0.7 ppm. The ¹⁹F MAS NMR spectra exhibit a signal for Mg₂AlF at -150 ppm, one due to AlF₆ (K₃AlF₆·0.5H₂O) at -157 ppm, and one for Mg₃F at -174 ppm. Comparison of the ¹H and ¹⁹F MAS NMR spectra for different Al- and Fcontents reveals a non-statistical distribution of F- and OH-groups at the crystallographic sites in the octahedral sheets where F prefers sites coordinated by three Mg, and OH sites with Al in the nextnearest coordination sphere.