American Mineralogist, Volume 88, pages 464-468, 2003

LETTER

Ultrapotassic clinopyroxene from the Kumdy-Kol microdiamond mine, Kokchetav Complex, Kazakhstan: Occurrence, composition and crystal-chemical characterization

LUCA BINDI,^{1,*} OLEG G. SAFONOV,² VASILY O. YAPASKURT,³ LEONID L. PERCHUK,³ AND SILVIO MENCHETTI¹

¹Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121, Florence, Italy
²Institute of Experimental Mineralogy, Moscow district, 142432, Chernogolovka, Russia
³Department of Petrology, Moscow State University, Vorobievy Gory, 119899, Moscow, Russia

ABSTRACT

We report data on the composition and crystal structure of the most K-rich (3.61 wt% K₂O) natural clinopyroxene yet discovered. The studied crystal was found as a tiny inclusion in garnet from a garnet-clinopyroxene rock of the Kumdy-Kol microdiamond mine, Kokchetav complex, Northern Kazakhstan. Microprobe analysis yields the formula (Ca_{0.61}Fe_{0.13}Mg_{0.04}Mn_{0.01}K_{0.17}Na_{0.05}) (Al_{0.61}Mg_{0.39})(Si_{1.61}Al_{0.39})O_{6.00}. Lattice parameters are: a = 9.773(1), b = 8.926(1), c = 5.269(1) Å, $\beta = 105.75(1)^{\circ}$. The structure was refined up to $R_{all} = 2.42\%$ using 982 independent reflections. Substitution of K for Ca causes significant modification of the average structure. No evidence for an additional M2' position was found. Crystal-chemical characteristics are compared with published data on both natural and synthetic K-bearing clinopyroxenes.