Biomimetic control of crystal assembly by growth in an organic hydrogel network

OLAF GRASSMANN,¹ REINHARD B. NEDER,² ANDREW PUTNIS,³ AND PEER LÖBMANN^{1,*}

¹Lehrstuhl für Silicatchemie, University of Würzburg, Röntgenring 11, D-97070 Würzburg, Germany ²Mineralogisches Institut, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany ³Institut für Mineralogie, University of Münster, Corrensstraße 24, D-48149 Münster, Germany

ABSTRACT

Calcite aggregates are mineralized in an organic poly-acrylamide hydrogel using a counter diffusion arrangement. The particles obtained show a characteristic pseudo-octahedral morphology, which is unexpected for calcite crystals. Scanning and transmission electron microscopy reveal a microstructure composed of individual highly aligned calcite crystallites. Although the aggregates consist of independent crystallites, the X-ray diffraction patterns suggest calcite single crystals. By analogy with some biominerals, the inorganic assembly is intergrown with an organic hydrogel network. A specific model is proposed for growth of the aggregate.