Raman spectroscopic study of H₂O in bikitaite: "One-dimensional ice"

BORIS A. KOLESOV¹ AND CHARLES A. GEIGER^{2,*}

¹Institute of Inorganic Chemistry, Lavrentiev prosp. 3, Novosibirsk 630090, Russia ²Institut für Geowissenschaften, Universität Kiel, Olshausenstr. 40, 24098 Kiel, Germany

ABSTRACT

The zeolite bikitaite, $Li_2[Al_2Si_4O_{12}]\cdot 2H_2O$, has structural channels containing infinite chains of H_2O molecules running parallel to [010]. One hydrogen atom of an H_2O molecule is weakly hydrogen bonded to an O atom of a neighboring molecule, while the other hydrogen atom is unbonded. The molecules are ordered and the chains they form have been called "one-dimensional ice." Polarized Raman spectra of single crystals in the wavenumber range 40–4000 cm⁻¹ were measured from 5 to 625 K. At low temperatures, four different O-H stretching vibrations can be observed between 3330 and 3600 cm⁻¹, as well as H_2O bending vibrations at about 1640–1650 cm⁻¹. The two lower wavenumber hydrogen-bonded O-H stretching modes increase in wavenumber with increasing temperature, while the higher wavenumber non-hydrogen-bonded OH modes decrease in wavenumber. The temperature dependence of the linewidths of the O-H stretching modes and the degree of hydrogen bonding between neighboring H_2O molecules show that the main cause of line broadening is modulation of the OH potential from low-energy thermal O···O vibrations in the H_2O chains. At elevated temperatures, the different O-H stretching modes become similar in energy and only a single symmetric H_2O stretching band is observed above 520 K. At these temperatures the H_2O molecules lose their hydrogen bonding and are only bonded to Li cations at the walls of the channels.