Experimental determination of the equilibria: rutile + magnesite = geikielite + CO₂ and zircon + 2 magnesite = baddeleyite + forsterite + 2 CO₂

JOHN M. FERRY,^{1,2,*} ROBERT C. NEWTON,² AND CRAIG E. MANNING²

¹Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland 21218, U.S.A. ²Department of Earth and Space Sciences, University of California at Los Angeles, Los Angeles, California 90095, U.S.A.

ABSTRACT

The *P-T* conditions of both equilibria were determined precisely by reversal experiments in a piston-cylinder apparatus. On the basis of 8 experiments, brackets for the rutile-magnesite-geikielite equilibrium are 7.0–7.1 kbar at 800 °C, 8.6–8.7 kbar at 850 °C, and 10.5–10.7 kbar at 900 °C. On the basis of 9 experiments, brackets for the zircon-magnesite-baddeleyite-forsterite equilibrium are 7.1–7.7 kbar at 800 °C, 9.2–9.4 kbar at 850 °C, and 10.7–10.9 kbar at 900 °C. Considering experimental uncertainties in *P* (±300 bars) and *T* (±3 °C), equilibrium curves calculated from both the Berman and the Holland and Powell databases pass through all brackets. Molar Gibbs free energy of formation from the elements at 1 bar and 298 K for geikielite and zircon, derived from the experiments and consistent with the Berman database, are -1481.94 ± 0.67 kJ and -1917.54 ± 1.25 kJ, respectively. Corresponding values consistent with the Holland and Powell database are -1479.30 ± 0.74 kJ and -1918.47 ± 1.49 kJ. Application of the two equilibria indicate that: (1) the mole fraction of CO₂ in fluid was 0.54–1.00 when geikielite and baddeleyite formed during contact metamorphism of siliceous dolomites in the Ballachulish aureole, Scotland; (2) the activity of CO₂ could have been as low as 2·10⁻⁵ during ultra-high pressure metamorphism of magnesite-bearing ecologites; and (3) the activity of CO₂ was <0.18 during one instance of mantle metasomatism.