American Mineralogist, Volume 87, pages 715-720, 2002

The crystal structures of cesanite and its synthetic analogue—A comparison A. PIOTROWSKI,¹ V. KAHLENBERG,^{1,*} R.X. FISCHER,¹ Y. LEE,² AND J.B. PARISE²

¹Universität Bremen, Fachbereich Geowissenschaften (Kristallographie),

Klagenfurter Strasse, 28359 Bremen, Germany

²Department of Geosciences, State University of New York, Stony Brook, New York 11794-2100, U.S.A.

ABSTRACT

Single crystals of a synthetic apatite-like phase with composition Na_{6.9}Ca_{3.1}(SO₄)₆(OH)_{1.1} were grown under hydrothermal conditions. This compound crystallizes in the hexagonal space group $P\overline{6}$ (*a* = 9.4434(13) Å, *c* = 6.8855(14) Å, *Z* = 1). The structure was solved by direct methods, and subsequently refined using 655 independent reflections (*R*1 = 0.0542). The chemical composition and the unit cell parameters indicated a close structural relationship with the mineral cesanite. A reinvestigation of the mineral showed that the natural and the synthetic phases are isostructural. Small differences result from the incorporation of both H₂O and (OH)⁻ into the structure of cesanite. Observed systematic absences revealed that the space group *P*6₃/*m* allocated to cesanite in earlier studies is incorrect. The crystal structure of a cesanite with composition Na_{7.0}Ca_{3.0}(SO₄)₆(OH)_{1.0}(H₂O)_{0.8} was successfully refined in space group *P* $\overline{6}$ (*a* = 9.4630(8) Å, *c* = 6.9088(5) Å, *Z* = 1, *R*1 = 0.0468 for 720 independent reflections [*I* > 2 σ (*I*)]). The symmetry reduction can be attributed to ordering of the Na and Ca atoms among four symmetrically independent cation sites.