High-pressure single-crystal X-ray diffraction study of katoite hydrogarnet: Evidence for a phase transition from $Ia3d \rightarrow I\overline{4}3d$ symmetry at 5 GPa

GEORGE A. LAGER,^{1,*} ROBERT T. DOWNS,² MARCUS ORIGLIERI,² AND REBECCA GAROUTTE²

¹Department of Geography and Geosciences, University of Louisville, Louisville, Kentucky 40292, U.S.A. ²Department of Geosciences, University of Arizona, Tucson, Arizona 95721, U.S.A.

ABSTRACT

The crystal structure of katoite hydrogarnet has been refined at 0.0001, 2.15, 4.21, 5.09, 6.00, 7.09, and 7.78 GPa from single-crystal X-ray diffraction data using a 4:1 methanol:ethanol mixture as pressure medium in a Merrill-Bassett diamond-anvil cell. Below ~5 GPa, the katoite structure has *Ia3d* symmetry and compresses by bond shortening rather than bond bending, in agreement with recent quantum mechanical calculations. An unconstrained third-order Birch-Murnaghan fit to the unit-cell volumes and pressures for *Ia3d* symmetry gave the following equation of state parameters: $V_0 = 1987.6(1)$ Å³, $K_0 = 58(1)$ GPa and K' = 4.0(7). Above this pressure, the structure undergoes a phase transition to space group *I*43*d*, a non-centric subgroup of *Ia3d*. In the *I*43*d* structure, there are two non-equivalent (O₄H₄) groups. Both the Ca and Al atoms are displaced along *a* relative to their positions in *Ia3d*. It is proposed that compression of the short H-H distance between (O₄H₄) groups destabilizes the structure and may initiate the observed phase transition. Corroboration of this model will require accurate information on the hydrogen atom positions at pressures above 5 GPa.