Determination of molar absorptivities for infrared absorption bands of H₂O in andesitic glasses

CHARLES W. MANDEVILLE,^{1,*} JAMES D. WEBSTER,¹ MALCOLM J. RUTHERFORD,² BRUCE E. TAYLOR,³ ADRIAN TIMBAL,³ AND KEVIN FAURE⁴

¹American Museum of of Natural History, Central Park West at 79th St. New York, New York 10024-5192, U.S.A.
²Department of Geological Sciences, Brown University, Box 1846, Providence, Rhode Island 02912, U.S.A.
³Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A0E8, Canada
⁴Institute of Geological & Nuclear Sciences, 30 Gracefield Rd. Lower Hutt, New Zealand

ABSTRACT

We have determined infrared molar absorptivities for water absorption bands in Fe-bearing and Fe-free andesitic glasses. Water dissolves in andesitic glasses as both hydroxyl groups and molecular water as observed in other silicate glasses. Concentrations of molecular water and hydroxyl species are a strong function of total water content. IR molar absorptivities for Fe-bearing andesite are $\varepsilon_{3570} = 62.32 \pm 0.42$ L/mol·cm, $\varepsilon_{4500} = 0.79 \pm 0.07$ L/mol·cm, $\varepsilon_{5200} = 1.07 \pm 0.07$ L/mol·cm, and $\varepsilon_{1630} = 42.34 \pm 2.77$ L/mol·cm. Molar absorptivities for Fe-free andesite are 69.21 ± 0.52 L/mol·cm for ε_{3570} , 0.89 ± 0.07 L/mol·cm for ε_{4500} , 1.46 ± 0.07 L/mol·cm for ε_{5200} , and 52.05 ± 2.85 L/mol·cm for ε_{1630} . Molar absorptivities show significant compositional dependencies that can be predicted based on tetrahedral cation (Si⁺⁴, Al⁺³)/total cation fraction.