Structural properties and heat-induced oxidation-dehydrogenation of manganoan ilvaite from Perda Niedda mine, Sardinia, Italy

PAOLA BONAZZI* AND LUCA BINDI

Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121, Florence, Italy

ABSTRACT

An unusually Mn-rich ilvaite sample from the Perda Niedda mine in Sardinia, Italy, was studied in order to clarify the Mn²⁺ distribution among the different structural sites, and to observe the structural response of the mineral upon thermally induced oxidation-dehydrogenation. The crystal structure and the chemical composition of one crystal [a = 13.014(5), b = 8.867(3), c = 5.838(4) Å, $\beta =$ $90.02(4)^{\circ}$] were investigated. X-ray crystal-structure refinement, performed in the *Pnam* space group, and electron microprobe analyses yielded the formula (Ca_{0.98}Mn²⁺_{0.02})(Fe³⁺Fe²⁺)(Mn_{0.72}Fe²⁺_{0.28}) (Si₂O₇)O(OH). Crystal chemical details, compared to structural data from literature, led to the assumption that Mn²⁺ replaces Fe²⁺, mainly at the M2 site. Annealing experiments and structure refinements were performed in the temperature range 400–690 °C. No phase transition was observed over the entire temperature range. Oxidation of Fe²⁺ at the M1 site, with concomitant dehydrogenation, was deduced from examination of the structural adjustments occurring as the temperature was increased. A useful model to evaluate a possible OH⁻ \leftrightarrow O²⁻ substitution in ilvaite was obtained.