The crystal structure and cation ordering of Phase-X-(K_{1-x-n})₂(Mg_{1-n}[Al,Cr]_n)₂Si₂O₇H_{2x}: A potential K- and H-bearing phase in the mantle*

FRANCO MANCINI,^{1,}[†] GEORGE E. HARLOW,¹ AND CHRISTOPHER CAHILL²

¹Department of Earth and Planetary Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024-5192, U.S.A.

²Department of Chemistry, George Washington University, 725 21st Street, N.W. Washington, D.C. 20052, U.S.A.

ABSTRACT

Phase-X, a potassium di-magnesium acid disilicate, is a high-pressure synthetic compound—a potential K-bearing silicate in the mantle—with space group $P6_3cm$ (no. 185), a = b = 5.028(2) Å, c = 13.216(3) Å, V = 289.34 Å³, Z = 2. The structure has been determined with 1521 CCD measured intensities and refined by the least-square method to R = 0.0187. The structure is built up of octahedral MgO sheets and layers containing disilicate groups, Si₂O₇, (with distinct Si1 and Si2 tetrahedra linked by the apical O2 atom) alternating along the \mathbf{c} axis. The octahedral sheet is based on a hexagonal closest-packed array of two layers of non-equivalent O atoms, O1 and O3; two-thirds of all edge-sharing M octahedra are filled. Within the framework of the Si₂O₇ groups are channel structures parallel to [100], [010], and [110] that contain K atoms disordered in the middle of a large trigonal cavity (the A site). The FTIR spectrum in the OH stretching region shows a sharp peak at 3602 cm^{-1} due to OH⁻ ordered in one anion site; the position of hydrogen, which operates in a charge-balancing substitution for the partial occupancy of the A site $(K_{1-x} \square_x)^A \leftrightarrow H_x \square_{1-x})^H$, is undetermined. Densification in phase-X is affected by the greater compression of the empty octahedra in the octahedral layer and by constraining the trigonal A cavity containing the K atom to the size of the Si₂O₇ disilicate group. This dense packing contributes to the relatively high zero-pressure calculated density of 3.38 g/cm³.