American Mineralogist, Volume 87, pages 1261–1265, 2002

Structural refinements of magnesite at very high pressure

GUILLAUME FIQUET,^{1,*} FRANÇOIS GUYOT,¹ MARTIN KUNZ,² JAN MATAS,³ DENIS ANDRAULT,⁴ AND MICHAEL HANFLAND⁵

¹Laboratoire de Minéralogie Cristallographie,UMR CNRS 7590, Institut de Physique du Globe de Paris, Universités Paris VI et VII, 4 Place Jussieu, 75252 Paris cedex 05 France

²Naturhistorisches Museum, Augustinergasse 2, CH-4001 Basel

³Laboratoire de Sciences de la Terre, Ecole Normale Supérieure de Lyon, 46, Allée d'Italie 69364 LYON Cedex 07 France ⁴Département des Géomatériaux, Institut de Physique du Globe de Paris, 4 Place Jussieu, 75252 Paris Cedex 05 France ⁵ESRF - High-pressure group, 6 rue Jules Horowitz BP220, 38043 Grenoble Cedex France

ABSTRACT

Unit-cell parameters of magnesite were measured between ambient pressure and 80 GPa using angle dispersive powder X-ray diffraction. The isothermal bulk modulus determined from a third order Birch Murnaghan equation of state is $K_T = 108(3)$ GPa with $K_T^+ = 5.0(2)$, and $V_0 = 279.2(2)$ Å³, in agreement with previously reported values. Combining this result with previous measurements, we show that magnesite with $R\overline{3}c$ structure is stable compared to the assemblage periclase + carbon dioxide at pressures and temperatures corresponding to the core-mantle boundary. Crystal structure refinements have also been carried out up to 80 GPa. The main structural change is a strong compression of the MgO₆ octahedra with increasing pressure, largely reflected in the anisotropic compression of the Co₃ groups do not remain invariant since they undergo first a slight expansion and then a compression above the same threshold pressure of 60 GPa above which Mg-O bonds cannot compress further. Thus, in this structure-type, the energy gain due to a drastic volume reduction of the MgO₆ octahedron compensates in a given pressure range for the energy cost of the small expansion of the CO₃ carbonate unit.