Crystal structure analysis of synthetic Ca₄Fe_{1.5}Al_{17.67}O₃₂: A high-pressure, spinel-related phase

V. KAHLENBERG,^{1,*} C.S.J. SHAW,² AND J.B. PARISE³

¹Fachbereich Geowissenschaften (Kristallographie), Universität Bremen, Klagenfurter Str., D-28359 Bremen, Germany ²Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany ³Center for High Pressure Research, Department of Geosciences, State University of New York, Stony Brook, New York 11794-2100, U.S.A.

ABSTRACT

The compound Ca₄Fe_{1.5}Al_{17.67}O₃₂ was synthesized at 2.5 GPa and 1250 °C using a piston-cylinder apparatus. The crystal structure, determined from single-crystal X-ray diffraction data collected at 295 K (tetragonal, space group $I\overline{4}2d$, a = 20.1847(14) Å, c = 5.6203(6) Å, V = 2289.83(3) Å³, Z = 4) was refined to a final R-index of 0.024 for 1229 independent observed reflections and 130 parameters. The main building units comprising the compound are 11.8×7.2 Å wide spinel-type ribbons running parallel to [001], which are connected via corner-sharing (Fe,Al)O₆-octahedra. Additional linkage between the spinel units is provided by AlO₄-tetrahedra residing on the $\overline{4}$ -axis as well as by Ca cations, in sevenfold coordination with oxygen attached to the spinel-like building units. Refinement of site occupancies reveals that the incorporation of Fe occurs at two of four octahedral and at two of three tetrahedral sites. Apparently, Ca₄Fe_{1.5}Al_{17.67}O₃₂ represents a new structure type exhibiting more pronounced structural modifications relative to the spinel aristotype compared with the so-called spinelloid structures. Furthermore, this synthetic compound contains Fe²⁺ in tetrahedral coordination, which is relatively uncommon among inorganic materials.