Crystal structures of Na and K aluminate mullites

REINHARD X. FISCHER,^{1,*} **MARTIN SCHMÜCKER**,² **PAUL ANGERER**,² **AND HARTMUT SCHNEIDER**²

¹Fachbereich Geowissenschaften der Universität, Klagenfurter Strasse, D-28359 Bremen, Germany ²Deutsches Zentrum für Luft- und Raumfahrt, Institut für Werkstoff-Forschung, D-51147 Köln, Germany

ABSTRACT

Mullite-type alkali aluminates (K_yNa_{1-y})_{0.67}Al₆O_{9.33} were synthesized from amorphous Al and alkali nitrates by sol-gel techniques. Rietveld refinements of six members of the solid solution series (y = 0.0, 0.2, ..., 1.0), together with Fourier syntheses and grid search analyses show that the Na and K atoms reside in the vacant Oc sites, with K at 1/2, 0, 1/2 and Na on a split site off the special position. The number of alkali atoms is restricted to 2/3 atoms per unit cell due to crystal chemical constraints. Consequently, unlike the aluminosilicate mullites, alkali mullites do not form a solid solution series with varying oxygen composition. All compounds studied here crystallize in space group *Pbam* with lattice constants ranging from *a* = 7.6819(4) Å, *b* = 7.6810(4) Å, *c* = 2.91842(8) Å for the Na aluminate to *a* = 7.6934(3) Å, *b* = 7.6727(3) Å, *c* = 2.93231(7) Å for the K aluminate mullite.