Potassium hydrogen disilicate: A possible model compound for ¹⁷O NMR spectra of hydrous silicate glasses

JANE V. OGLESBY, SCOTT KROEKER, AND JONATHAN F. STEBBINS*

Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115, U.S.A.

ABSTRACT

Oxygen-17 magic angle spinning, non-spinning, ¹H-decoupled, ¹H-¹⁷O cross-polarization, and triple-quantum magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy experiments were performed at two different magnetic fields on crystalline potassium hydrogen disilicate (KHSi₂O₅) and hydrous and anhydrous potassium tetrasilicate (K₂Si₄O₉), sanidine (KAlSi₃O₈), and haplogranite (KAlSi₃O₈-NaAlSi₃O₈-SiO₂) glasses. Crystalline KHSi₂O₅ has two bridging oxygen sites and one non-bridging oxygen site, and the NMR parameters for these two types of sites have been determined. The non-bridging oxygen (silanol) site is well-resolved and observed in a crystalline compound with an isotropic chemical shift (δ_{iso}) of 60 ppm, a quadrupolar coupling constant (C_Q) of 3.5 MHz, and an asymmetry parameter (η) of 0.35. Knowledge of the non-bridging-oxygen site parameters allows for comparisons to glassy or other materials that might have silanol-type structures. A similar peak can be found in the hydrous potassium silicate spectrum but not in the hydrous potassium aluminosilicate glass spectrum.