Structural environment and oxidation state of Mn in goethite-groutite solid-solutions

ANDREAS C. SCHEINOST,^{1,*} HELGE STANJEK,² DARRELL G. SCHULZE,³ UBALD GASSER,⁴ AND DONALD L. SPARKS¹

¹Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19717-1303, U.S.A.

²Lehrstuhl für Bodenkunde, Technische Universität, München, 85350 Freising, Germany

³Agronomy Department, Purdue University, West Lafayette, Indiana 47907, U.S.A.

⁴College of Engineering ISW, P.O. Box 335, CH 8820 Wadenswil, Switzerland

ABSTRACT

Both X-ray absorption and diffraction techniques were used to study the structural environment and oxidation state of Mn in goethite-groutite solid solutions, α -Mn_xFe_{1-x}OOH, with $x_{Mn} \leq 0.47$. Rietveld refinement of X-ray diffraction (XRD) data was employed to investigate the statistical long-range structure. The results suggest that increasing x_{Mn} leads to a gradual elongation of Fe and Mn occupied octahedra which, in turn, causes a gradual increase of the lattice parameter a and a gradual decrease of b and c in line with Vegard's law. X-ray absorption fine structure (XAFS) spectra at the MnK α and FeK α edges revealed, however, that the local structure around Fe remains goethite-like for $x_{Mn} \le 0.47$, while the local structure around Mn is goethite-like for $x_{Mn} \le 0.13$, but groutite-like for higher x_{Mn} . The spectral observations were confirmed by XAFS-derived metal distances showing smaller changes around Fe and larger changes around Mn as compared with those determined by XRD. Therefore, the XAFS results indicate formation of groutite-like clusters in the goethite host structure for $x_{Mn} > 0.13$, which remain undetected by XRD. The first prominent resonance peak in the X-ray absorption near-edge spectra (XANES) of the Mn goethites was 17.2 to 17.8 eV above the Fermi level of Mn (6539 eV), in line with that of Mn³⁺ reference compounds, and well separated from that of Mn²⁺ and Mn⁴⁺ compounds. Therefore, Mn in goethite is dominantly trivalent regardless of whether the samples were derived from Mn²⁺ or Mn³⁺ solutions. This may indicate a catalytic oxidation of Mn²⁺ during goethite crystal growth similar to that found at the surface of Mn oxides.