Structure, compressibility, hydrogen bonding, and dehydration of the tetragonal Mn³⁺ hydrogarnet, henritermierite

THOMAS ARMBRUSTER,^{1,*} THOMAS KOHLER,¹ EUGEN LIBOWITZKY,² ALEXANDRA FRIEDRICH,³ RONALD MILETICH,³ MARTIN KUNZ,³ OLAF MEDENBACH,⁴ AND JENS GUTZMER⁵

¹Laboratorium für chemische und mineralogische Kristallographie, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

²Institut für Mineralogie und Kristallographie, Universität Wien–Geozentrum, Althanstrasse 14, A-1090 Vienna, Austria

³Laboratory of Crystallography, ETH Zentrum, CH-8092 Zürich, Switzerland

⁴Institut für Mineralogie, Ruhr-Universität Bochum, Germany

⁵Department of Geology, Rand Afrikaans University, P.O. Box 524, Auckland Park 2006, South Africa

ABSTRACT

Henritermierite, space group $I_{4_1/acd}$, at 293 K a = 12.489(1), c = 11.909(1) Å, Z = 8, with close to end-member composition $(Ca_{2.98}Na_{0.01}Mg_{0.01})^{VIII}(Mn_{1.95}Fe_{0.01}Al_{0.04})^{VI}[SiO_4]_{2.07}[H_4O_4]_{0.93}$ from the N'Chwaning II mine at the Kalahari manganese fields, Republic of South Africa, has been studied by single-crystal X-ray diffraction at 100 and 293 K at ambient pressure and up to 8.7 GPa in a diamond-anvil cell at 293 K. Polarized FTIR spectroscopy at 80 and 293 K was also performed. The Mn³⁺O₆ octahedra display a tetragonally elongated type of Jahn-Teller distortion where the oxygen atoms of the elongated O-Mn-O axis (Mn-O: 2.2 Å) are moderately hydrogen bonded (O-H…O: 2.76 Å) to the H₄O₄ tetrahedra, which replace 1/3 of SiO₄ tetrahedra in an ordered fashion. Thus Jahn-Teller distortion and H₄O₄ arrangement are coupled and both are responsible for the tetragonal bulk symmetry. The H₄O₄ tetrahedra have a center-to-O distance of 1.98 Å and the H atoms are slightly above the tetrahedral faces as similarly observed in the synthetic katoite end-member, Ca₃Al₂[H₄O₄]₃. However, in henritermierite the O-H…O hydrogen bond is considerably bent (ca. 131°) and gives rise to an OH stretching mode at 3432(5) cm⁻¹. Additional, though weak, IR absorptions at 3508(2) and 3553(2) cm⁻¹ may be due to more remote hydrogen-bond acceptors (O-H…O: 3.29 Å) within the H₄O₄ tetrahedra.

Compressibility data for a third-order Birch-Murnaghan equation of state yield a bulk modulus of $K_0 = 97.9(9)$ GPa with a pressure derivative of K' = 5.3(3). The axial compressibilities indicate a pronounced compressional anisotropy which is explained by the orientation of the elongated axes of the Jahn-Teller distorted MnO₆ octahedra along the slightly more compressible [100]_{tetr} directions compared to the *c*-axis. The crystal structure was refined at a pressure of 8.6 GPa. The MnO₆ octahedra were observed to show anisotropic compression towards a more isometric shape. Calculated spontaneous strain reveals a trend towards a weaker tetragonal distortion.

If henritermierite is heated above 800 K in air it dehydrates and Mn^{3+} is partially oxidized to Mn^{4+} . This topotactic transformation leads to a new garnet-like phase of *Ia3d* symmetry with *a* = 12.12 Å and of Ca₃Mn_{2.26}O_{2.32}[SiO₄]_{2.42} composition in which instead of H₄O₄ tetrahedra a new disordered octahedral site is occupied by Mn.