American Mineralogist, Volume 86, pages 889-895, 2001

Optical spectra of Co²⁺ in three synthetic silicate minerals

MICHAEL N. TARAN* AND GEORGE R. ROSSMAN

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.

ABSTRACT

Polarized optical absorption spectra of three synthetic Co-bearing silicates, orthopyroxene, olivine and beryl, were studied at room and liquid nitrogen temperatures. In all three matrices, Co enters octahedral structural sites as the Co²⁺ ion. In accordance with the d^7 electronic energy level diagram, the spectra show three distinct band systems which are assumed to originate from three spin-allowed *dd* transitions of Co²⁺, ${}^4T_{1g}({}^4F) \rightarrow {}^4T_{2g}({}^4F)$, ${}^4T_{1g}({}^4F) \rightarrow {}^4A_{2g}({}^4F)$, and ${}^4T_{1g}({}^4F) \rightarrow {}^4T_{1g}({}^4P)$. The number of bands is different in different matrices and is regulated by the splitting of electronic states, symmetry selection rules for electronic transitions between them, and Co²⁺ ion distribution between non-equivalent structural sites. Due to a strong preference of Co²⁺ for the M2 site and the greater intensities (oscillator strengths) of electronic *dd* transitions for Co²⁺ in the M2 site, M2 Co²⁺ bands prevail in the (Mg,Co)SiO₃ orthopyroxene spectra. In olivines, the number of bands is larger than in orthopyroxene due to the combined contribution of both M1 Co²⁺ and M2 Co²⁺ ions. By comparison of the (Mg,Co)_2SiO₄ and Co₂SiO₄ olivine spectra, the bands caused by M1 Co²⁺ and M2 Co²⁺ were distinguished. The spectra of Co-bearing beryls, Be₃Al₂[Si₆O₁₈], prepared by both flux and hydrothermal growth, indicate that Co enters the structure mostly as Co²⁺ in the octahedral Al-site.