Synthesis and characterization of white micas in the join muscovite-aluminoceladonite

MAX W. SCHMIDT,¹ MATTIA DUGNANI,² AND GILBERTO ARTIOLI^{2,3,*}

¹CNRS, UMR 6524 Magmas et Volcans, Université Blaise Pascal, F-63038 Clermont-Ferrand, France ²Dipartimento di Scienze della Terra, Università di Milano, I-20133 Milano, Italy ³CNR Centro di Studio per la Geodinamica Alpina e Quaternaria, I-20133 Milano, Italy

ABSTRACT

Potassic white micas were synthesized in the K₂O-MgO-Al₂O₃-SiO₂-H₂O system along the pseudobinary join muscovite-aluminoceladonite (mu-Alcel). Composition of run products as measured by electron microprobe analysis are in the range mu₈₉-Alcel₁₁ to mu₀₁-Alcel₉₉. Cell parameters were determined on powder samples by full-profile Rietveld refinement, using both a single-polytype and a multi-polytype model. The results of both analysis models are in full agreement, and show that the phengite cell parameters have a distinct dependence on the celadonite content: the c parameter shows a monotonic decrease over the full compositional range, whereas the a and b parameters both increase in the Alcel₀-Alcel₆₀ range but decrease in the Alcel₆₀-Alcel₁₀₀ range. The monoclinic b angle decreases slightly with increasing celadonite content. The overall behavior of the cell parameters indicates a decrease of the ditrigonal distortion of the tetrahedral 6-rings, and an increased trioctahedral character of the structure at high celadonite compositions. The molar volume along the solid solution join shows a maximum at about Alcel₃₀. Molar volume vs. composition can be fitted by a symmetric function for the excess volume yielding a molar volume for end member aluminoceladonite of 13.957 \pm 0.006 J/bar, for muscovite 14.076 \pm 0.004 J/bar, and a symmetric positive deviation from ideal volumes of mixing with W = 0.198 ± 0.025 J/bar, and $r^2 = 0.941$. The use of an asymmetric excess volume function does not significantly improve the fit quality ($r^2 =$ 0.945).