Ab initio studies of possible fluorine-bearing four- and fivefold coordinated Al species in aluminosilicate glasses

YUN LIU AND HANNA NEKVASIL*

¹Center for High Pressure Research and Department of Geosciences, State University of New York, Stony Brook, New York 11794-2100, U.S.A.

ABSTRACT

Ab initio NMR gauge-including atomic orbital (GIAO) calculations were used to constrain assignments of resonances in ²⁷Al NMR spectra of F-bearing alkali aluminosilicate glasses. The effect of bond angles within the range 126–150° on the chemical shift was investigated using cluster models of next-nearest atoms that are charge balanced by hydrogen atoms. GIAO calculations used geometries obtained through optimization at fixed Al-O-Si bond angles. The calculated peak positions for all of the 4-fold coordinated Al species yielded calculated ²⁷Al NMR peak positions in good agreement with the experimental data, suggesting that any or all of the species AlF_4^- , $AlF_3O(SiH_3)^-$, $AlF_2O_2(SiH_3)_2^-$, and $AlFO_3(SiH_3)_3^-$ may be present. Three of the investigated 5-fold coordinated species AlF_5^- , $AlF_3O_2(SiH_3)_2^-$, and $AlF_2O_3(SiH_3)_3^-$ fit the experimental requirements well, whereas the remaining 5-fold coordinated species that were tested $[AlF_4O(SiH_3)^{2-}, and AlFO_4(SiH_3)_2^-]$ did not.