The crystal structure of namibite, Cu(BiO)₂VO₄(OH), and revision of its symmetry

UWE KOLITSCH* AND GERALD GIESTER

Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstr. 14, A-1090 Wien, Austria.

ABSTRACT

The crystal structure of namibite, Cu(BiO)₂VO₄(OH) [triclinic, space group $P\overline{1}$, a = 6.210(1), b =7.398(1), c = 7.471(1) Å, $\alpha = 90.10(1)$, $\beta = 108.73(1)$, $\gamma = 107.47(1)^{\circ}$, V = 308.22(8) Å³, Z = 2] was determined using single-crystal X-ray diffraction data. The refinement, based on 2140 unique reflections with $F_0 > 4\sigma(F_0)$, gave R1 = 3.61%. The structure determination showed namibite to be triclinic-pseudomonoclinic; the previously reported C-centered monoclinic cell is a pseudocell. The structure contains two unique Bi atoms, with nine Bi-O bonds between 2.17 and 3.39 Å. The Bi coordinations show some stereochemical influence of the lone pair of electrons on Bi^{3+} . A threedimensional network is formed by linkages of Bi-O polyhedra to one slightly distorted $V^{5+}O_4$ tetrahedron that decorates chains of corner-sharing CuO_6 polyhedra extending parallel to the b axis. The CuO₆ polyhedra show the Jahn-Teller-distorted [4+2]-coordination of Cu²⁺. Layers of Bi atoms parallel to (100) alternate with layers of parallel heteropolyhedral [Cu(VO₄)O₂(OH)] chains. According to bond-valence calculations and geometrical considerations, the H atom of the OH group is probably involved in disordered or trifurcated H bonding. The structure of namibite represents a slightly distorted ordered variant of the monoclinic structure of brendelite, (Bi,Pb)₂(Fe³⁺,Fe²⁺)O₂(OH)(PO₄). Further relations to synthetic $Cu_3Bi_4V_2O_{14}$, to the 7 Å chain-structure phosphates and sulfates, and to linarite are outlined.